分析 由題意作平面區(qū)域,易知BC⊥BA,從而可得當(dāng)三角形內(nèi)接于圓時(shí),面積最大,從而求最大值及點(diǎn)A的坐標(biāo),從而求得.
解答 解:由題意作平面區(qū)域如下,
易知直線y=2x+1與直線x=2-2y互相垂直,即BC⊥BA;
故當(dāng)三角形內(nèi)接于圓時(shí),面積最大,
故區(qū)域D的面積最大值為$\frac{1}{2}$×$\sqrt{10}$×$\frac{\sqrt{10}}{2}$=$\frac{5}{2}$,
故設(shè)A(2-2y,y),
|BA|=$\sqrt{(2-2y)^{2}+(y-1)^{2}}$=$\frac{\sqrt{10}}{\sqrt{2}}$,
解得,y=0或y=2(舍去);
故A(2,0),
故 z=x-y最大值為2-0=2,
故答案為:$\frac{5}{2}$,2.
點(diǎn)評(píng) 本題考查了線性規(guī)劃的變形應(yīng)用及數(shù)形結(jié)合的思想方法應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a≥5 | B. | a≥4 | C. | a<5 | D. | a<4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{23}{4}$,$\frac{29}{4}$) | B. | ($\frac{20}{3}$,$\frac{29}{4}$) | C. | ($\frac{23}{4}$,$\frac{20}{3}$) | D. | (-∞,$\frac{20}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 2π | C. | $\frac{π}{2}$ | D. | π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | 2 | C. | $\sqrt{3}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com