14.已知直線l:2x+(m+1)y+2m=0(m∈R)在x軸上的截距等于它在y軸上的截距的2倍,求直線l的方程.

分析 分別令x=0,y=0,求出截距,由題意得到-m=-2×$\frac{2m}{m+1}$,解得m的值,即可求出直線方程.

解答 解:∵2x+(m+1)y+2m=0(m∈R),
令x=0,得y=-$\frac{2m}{m+1}$,令y=0,得x=-m,
∵直線l:2x+(m+1)y+2m=0(m∈R)在x軸上的截距等于它在y軸上的截距的2倍,
∴-m=-2×$\frac{2m}{m+1}$,
解得m=3或m=0,
當m=0時,直線為2x+y=0,
當m=3時,直線為x+2y+3=0.

點評 本題考查了求直線方程的應用問題,也考查了分類討論方法的應用問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.在如圖所示的幾何體中,三棱錐D-ABC的各條棱長均為2,OA,OB,OC兩兩垂直,則下列說法正確的是( 。
A.OA,OB,OC的長度可以不相等B.直線OB∥平面ACD
C.直線OD與BC所成的角是45°D.直線AD與OB所成的角是45°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是( 。
A.72cm3B.90cm3C.108cm3D.138cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=2cos2x+$\sqrt{3}$sin2x.
(1)求函數(shù)f(x)的最小正周期;
(2)在△ABC中,若C為銳角,f(A+B)=0,AC=2$\sqrt{3}$,BC=3,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知直線l的方向向量為$\overrightarrow{a}$=(1,0,2),平面α的法向量$\overrightarrow{n}$=(-1,0,-2),則( 。
A.l?αB.l⊥αC.l∥αD.l與α斜交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|{2}^{x}-1|,x<2}\\{\frac{3}{x-1},x≥2}\end{array}\right.$,若函數(shù)g(x)=f(x)-loga8有兩個不同的零點,則實數(shù)a的取值范圍是( 。
A.[$\frac{1}{8}$,1)∪(1,2]B.(2,8)C.(2,+∞)D.(2,8]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.定義在R上的函數(shù)f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,Sn=f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$),n=2,3,…
(1)求Sn;
(2)是否存在常數(shù)M>0,?n≥2,有$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n+1}}$≤M.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知曲線y=2e${\;}^{\frac{x}{2}}$-ax在點(0,2)處的切線在x軸上的截距為1,則a=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.若0<α<π,0<β<π,并且8cos2α-9tan2β+$\sqrt{3}$(8sinα+6tanβ)=17,求兩個角α,β

查看答案和解析>>

同步練習冊答案