20.函數(shù)y=3-2cosx(x∈[-$\frac{π}{3}$,$\frac{π}{3}$])的值域是[1,2].

分析 根據(jù)題意,利用余弦函數(shù)的性質(zhì)可得cosx∈[$\frac{1}{2}$,1],即可得答案.

解答 解:∵x∈[-$\frac{π}{3}$,$\frac{π}{3}$],
∴cosx∈[$\frac{1}{2}$,1],
∴-2cosx∈[-2,-1]
∴函數(shù)y=3-2cosx(x∈[-$\frac{π}{3}$,$\frac{π}{3}$])的值域是[1,2].
故答案為:[1,2].

點(diǎn)評 本題考查函數(shù)單調(diào)性的運(yùn)用,關(guān)鍵是判斷出cosx∈[$\frac{1}{2}$,1].

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若tanα=2,則$\frac{sinα-2cosα}{2sinα-3cosα}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知,A為△ABC的一個(gè)內(nèi)角,cosA+sinA=$\frac{1}{5}$.求:
(1)tanA的值;
(2)$\frac{sinA+2cosA}{sinA-cosA}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$=(1,2),$\overrightarrow{a}$+$\overrightarrow$=(4,-10),則$\overrightarrow{a}$等于(  )
A.(-2,-2)B.(2,2)C.(-2,2)D.(2,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知x,y∈R,且8-2y=2x,則x+y的最大值為(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{ax+b}{{x}^{2}+1}$是定義域在(-1,1)上的奇函數(shù),且f($\frac{1}{2}$)=$\frac{2}{5}$.
(Ⅰ)求f(x)的解析式;
(Ⅱ)判斷f(x)的單調(diào)性,并證明你的結(jié)論;
(Ⅲ)若f(2t-2)+f(t)<0,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知{an}是公差為d的等差數(shù)列,它的前n項(xiàng)和為Sn,S4=2S2+4,${b_n}=\frac{{1+{a_n}}}{a_n}$.
(1)求公差d的值;
(2)若${a_1}=-\frac{5}{2}$,求數(shù)列{bn}中的最大項(xiàng)和最小項(xiàng)的值;
(3)若對任意的n∈N*,都有bn≤b8成立,求a1的取值范圍.
(4)若對任意的n∈N*,數(shù)列{bn}中最小值為b8,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.圓心在(1,1)的圓截直線y=x-2所得的弦長為2$\sqrt{2}$,則這個(gè)圓的方程為(x-1)2+(y-1)2=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知在正四面體A-BCD中,E,F(xiàn)分別是線段AB,CD的中點(diǎn),則直線CE,AF的夾角的余弦值是( 。
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案