18.已知O是坐標(biāo)原點(diǎn),點(diǎn)M(x,y)為平面區(qū)域$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$上的一個(gè)動(dòng)點(diǎn),則x+y的最大值是3.

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,求目標(biāo)函數(shù)z=x+y的最小值.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分ABC).
設(shè)z=x+y得y=-x+z,平移直線y=-x+z,
由圖象可知當(dāng)直線y=-x+z經(jīng)過點(diǎn)A(1,2)時(shí),
直線y=-x+z的截距最大,此時(shí)z最大.
代入目標(biāo)函數(shù)z=x+y得z=1+2=3.
即目標(biāo)函數(shù)z=x+y的最大值為3.
故答案為:3.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某地區(qū)交通執(zhí)法部門從某日上午9時(shí)開始對(duì)經(jīng)過當(dāng)?shù)氐?00名車輛駕駛?cè)藛T駕駛的車輛進(jìn)行超速測(cè)試并分組,并根據(jù)測(cè)速的數(shù)據(jù)只做了頻率分布圖:
組號(hào)超速分組頻數(shù)頻率頻率
組距
1[0,20%]1760.88z
2[20%,40%]120.060.0030
3[40%,60%]6y0.0015
4[60%,80%]40.020.0010
5[80%,100%]x0.010.0005
(1)求z,y,x的值;
(2)若在第3,4,5組用分層抽樣的方法隨機(jī)抽取6名駕駛?cè)藛T做回訪調(diào)查,并在這6名駕駛員中任選2人進(jìn)行采訪,求這2人中恰有1人超速在[80%,100%]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)f(x)是周期為2的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=x${\;}^{\frac{1}{2}}$,則f(-$\frac{5}{2}$)=-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,已知a=6,sinA=$\frac{\sqrt{3}}{3}$,B=A+$\frac{π}{2}$;
(1)求b的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.給出下列命題:
①若$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|-|{\overrightarrow b}|$,則存在實(shí)數(shù)λ,使得$\overrightarrow b=λ\overrightarrow a$;
②$a={log_{\frac{1}{3}}}2,b={log_{\frac{1}{2}}}3,c={({\frac{1}{3}})^{0.5}}$大小關(guān)系是c>a>b;
③已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是$\frac{a}=-3$;
④已知a>0,b>0,函數(shù)y=2aex+b的圖象過點(diǎn)(0,1),則$\frac{1}{a}+\frac{1}$的最小值是$4\sqrt{2}$.其中正確命題的序號(hào)是①② (把你認(rèn)為正確的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.“a<0”是“函數(shù)y=x2-2ax在區(qū)間[1,+∞)上遞增”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖所示,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0,c=$\sqrt{{a}^{2}-^{2}}$)的左頂點(diǎn)為A,上頂點(diǎn)為B,左焦點(diǎn)為F,原點(diǎn)O到直線BF的距離為$\frac{c}{2}$,△ABF的面積為1-$\frac{\sqrt{3}}{2}$.
(1)求橢圓C的方程;
(2)過直線x=4上的動(dòng)點(diǎn)P引橢圓C的兩條切線,切點(diǎn)分別為M,N,求△OMN面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)等比數(shù)列{an}的公比為q,其前項(xiàng)之積為Tn,并且滿足條件:${a_1}>1,{a_{2015}}{a_{2016}}>1,\frac{{{a_{2015}}-1}}{{{a_{2016}}-1}}<0$.給出下列結(jié)論:(1)0<q<1;(2)a2015a2017-1>0;(3)T2016的值是Tn中最大的(4)使Tn>1成立的最大自然數(shù)等于4030.其中正確的結(jié)論為( 。
A.(1),(3)B.(2),(3)C.(1),(4)D.(2),(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.同時(shí)拋擲2個(gè)骰子,其點(diǎn)數(shù)之和為6的概率為(  )
A.$\frac{1}{9}$B.$\frac{1}{6}$C.$\frac{1}{12}$D.$\frac{5}{36}$

查看答案和解析>>

同步練習(xí)冊(cè)答案