8.同時(shí)拋擲2個(gè)骰子,其點(diǎn)數(shù)之和為6的概率為(  )
A.$\frac{1}{9}$B.$\frac{1}{6}$C.$\frac{1}{12}$D.$\frac{5}{36}$

分析 求出所有可能的結(jié)果和點(diǎn)數(shù)和為6的基本事件,代入古典概型的概率公式計(jì)算.

解答 解:同時(shí)拋擲2個(gè)骰子,共有6×6=36種可能的結(jié)構(gòu),它們發(fā)生的機(jī)會(huì)均等.
其中點(diǎn)數(shù)和為6的基本事件共有5個(gè),分別是(1,5),(5,1),(2,4),(4,2),(3,3).
∴其點(diǎn)數(shù)之和為6的概率P=$\frac{5}{36}$.
故選D.

點(diǎn)評(píng) 本題考查了古典概型的概率計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知O是坐標(biāo)原點(diǎn),點(diǎn)M(x,y)為平面區(qū)域$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$上的一個(gè)動(dòng)點(diǎn),則x+y的最大值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=logacos(2x-$\frac{π}{3}$)(其中a>0,且a≠1).
(1)求它的定義域;
(2)求它的單調(diào)區(qū)間;
(3)判斷它的奇偶性;
(4)判斷它的周期性,如果是周期函數(shù),求出它的周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知平面向量$\overrightarrow{a}$=(x,1),$\overrightarrow$=(2,-3),如果$\overrightarrow a∥\overrightarrow b$,那么x=( 。
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,若直線l:y=-$\frac{\sqrt{3}}{3}$x+1經(jīng)過橢圓C的右焦點(diǎn)及上頂點(diǎn).
(l)求橢圓C的方程;
(2)設(shè)直線x=my+1與橢圓C交于A,B兩點(diǎn),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為A′(A′與B不重合),則直線A′B與x軸是否交于一個(gè)定點(diǎn)?若是,請(qǐng)寫出定點(diǎn)坐標(biāo),并證明你的結(jié)論;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=xlnx,g(x)=f(x)+f(m-x),m>0.
(1)求函數(shù)g(x)的定義域;
(2)求g(x)的單調(diào)區(qū)間;
(3)若a>0,b>0,證明:f(a)+(a+b)1n2≥f(a+b)-f(b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知點(diǎn)A(2,3)、B(x,1),且|AB|=$\sqrt{13}$,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.定義在R的函數(shù)f(x)=ln(|x|+1)-$\frac{1}{x^2+1}$,滿足f(2x-1)>f(x+1),則x的取值范圍(-∞,0)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知數(shù)列{an}滿足anan+1=2n,則$\frac{{a}_{17}}{{a}_{13}}$=4.

查看答案和解析>>

同步練習(xí)冊(cè)答案