分析 直線的方程為y-2=k(x-1),把它與曲線y=$\frac{a}{x}$聯(lián)立,由條件利用韋達(dá)定理以及判別式大于零求得a的范圍.
解答 解:設(shè)直線的方程為y-2=k(x-1),當(dāng)k=0時(shí),直線的方程為y=2,求得x=$\frac{a}{2}$,不滿足條件.
當(dāng)k≠0時(shí),把y-2=k(x-1)與曲線y=$\frac{a}{x}$聯(lián)立,
化簡可得y2-(2-k)y-ka=0,∴y1+y2=2-k=a,
∵△=(2-k)2 +4ak=a2+4(2-a)a>0,求得 0<a<$\frac{8}{3}$,
故a的范圍是(0,2)∪(2,$\frac{8}{3}$ ).
點(diǎn)評(píng) 本題主要考查方程根的存在性以及個(gè)數(shù)判斷,一元二次方程根的分布與系數(shù)的關(guān)系,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m≤$\frac{5}{2}$ | B. | m≥$\frac{3}{2}$ | C. | -2<m<2 | D. | -2≤m≤2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com