2.如圖,AB是圓O的直徑,C為圓周上一點,過C作圓O的切線l,過A作直線l的垂線AD,D為垂足,AD與圓O交于點E.
(1)求證:AB•DE=BC•CE;
(2)若AB=8,BC=4,求線段AE的長.

分析 (1)連接BE,OC,OC∩BE=F,證明△EDC∽△BCA,即可證明AB•DE=BC•CE;
(2)證明四邊形EFCD是矩形,△OBC是等邊三角形,即可得出結(jié)論.

解答 (1)證明:連接BE,OC,AC,OC∩BE=F,則
∵CD是圓O的切線,
∴OC⊥l,
∵AD⊥l,∴AD∥OC,
∵AB是圓O的直徑,∴AD⊥BE,
∵AD⊥l,∴l(xiāng)∥BE,
∴∠DCE=∠CBE=∠CAB,
∵∠EDC=∠BCA=90°,
∴△EDC∽△BCA,
∴$\frac{AB}{BC}$=$\frac{CE}{DE}$,
∴AB•DE=BC•CE;
(2)解:由(1)可知四邊形EFCD是矩形,
∴DE=CF,
∵圓O的直徑AB=8,BC=4,
∴∠ABC=60°
∴△OBC是等邊三角形,
∴∠EBA=30°,AE=4.

點評 本題考查圓的切線的性質(zhì),考查三角形相似的性質(zhì),考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.以下五個關(guān)于圓錐曲線的命題中:
①雙曲線$\frac{x^2}{16}-\frac{y^2}{9}$=1與橢圓$\frac{x^2}{49}+\frac{y^2}{24}$=1有相同的焦點;
②以拋物線的焦點弦(過焦點的直線截拋物線所得的線段)為直徑的圓與拋物線的準(zhǔn)線是相切的.
③設(shè)A、B為兩個定點,k為常數(shù),若|PA|-|PB|=k,則動點P的軌跡為雙曲線;
④過定圓C上一點A作圓的動弦AB,O為原點,若$\overrightarrow{OP}=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})$,則動點P的軌跡為橢圓.
其中真命題的序號為①②(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,長方體ABCD-A1B1C1D1中,E是棱DC中點,AB=4,BB1=BC=2.
(1)求線段B1E的長;
(2)求點C1到平面B1ED1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,若不等式f(-2m2+2m-1)+f(8m+ek)>0(e是自然對數(shù)的底數(shù)),對任意的m∈[-2,4]恒成立,則整數(shù)k的最小值是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)y=sin(2x-$\frac{π}{6}$)的單調(diào)增區(qū)間是[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,輸出n的值為( 。
A.5B.7C.9D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,每個函數(shù)圖象都有零點,但不能用二分法求圖中函數(shù)零點的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知等比數(shù)列{an}的前n項和為Sn,且公比q>1,a1=1,S4=5S2
(1)求an
(2)設(shè)bn=2nan,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知各項均為正數(shù)的數(shù)列{an}滿足an+2+2$\sqrt{{a}_{n}{a}_{n+2}}$=4an+1-an(n∈N*),且a1=1,a2=4.
(1)證明:數(shù)列{$\sqrt{{a}_{n}}$}是等差數(shù)列;
(2)數(shù)列{$\frac{4n+2}{{a}_{n}{a}_{n+1}}$}的前項n和為Sn,求證:Sn<2.

查看答案和解析>>

同步練習(xí)冊答案