19.若函數(shù)y=cos2x-3cosx+a的最小值是-$\frac{3}{2}$,求a的值.

分析 利用配方法變形,然后利用二次函數(shù)的單調(diào)性求出函數(shù)的最值,結(jié)合函數(shù)y=cos2x-3cosx+a的最小值是-$\frac{3}{2}$,求得a的取值.

解答 解:y=cos2x-3cosx+a=$(cosx-\frac{3}{2})^{2}-\frac{9}{4}+a$,
∵-1≤cosx≤1,
∴函數(shù)在[-1,1]上單調(diào)遞減,
${y}_{min}=(1-\frac{3}{2})^{2}-\frac{9}{4}+a=-\frac{3}{2}$,
∴a=$\frac{1}{2}$.

點(diǎn)評 本題考查函數(shù)的最值,訓(xùn)練了配方法求函數(shù)的最值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)E,F(xiàn)分別是正方形ABCD中CD、AB邊的中點(diǎn),將△ADC沿對角線AC對折,使得直線EF與AC異面,記直線EF與平面ABC所成角為α,與異面直線AC所成角為β,則當(dāng)tanβ=$\frac{1}{2}$時(shí),tanα=( 。
A.$\frac{3\sqrt{5}}{16}$B.$\frac{\sqrt{5}}{5}$C.$\frac{\sqrt{51}}{17}$D.$\frac{\sqrt{57}}{19}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在梯形ABCD中,AB∥CD,$\overrightarrow{AB}$=2$\overrightarrow{DC}$,$\overrightarrow{BE}$=$\overrightarrow{EC}$,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,則向量$\overrightarrow{AE}$等于( 。
A.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$B.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$C.$\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow$D.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.將拋物線y=2x2-4x+5先向右平移3個(gè)單位,再向下平移2個(gè)單位,求平移后所得拋物線的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知命題p:方程x2+mx+1=0有兩個(gè)不相等的負(fù)實(shí)根,命題q:不等式x2+(m-2)x+1=0無實(shí)根,若p或q為真,p且q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知sinα+cosα=$\sqrt{2}m$-3$\sqrt{2}$有意義,則m的取值范圍是[2,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求證:$\frac{si{n}^{2}α}{1+cotα}$+$\frac{co{s}^{2}α}{1+tanα}$=1-sinαcosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知a2≤1,|b|≤1,則滿足函數(shù)y=log3(x2+2ax+b)的定義域?yàn)槿w實(shí)數(shù)R的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知直線l1:ax-y+1=0與l2:x+ay+1=0(a∈R),給出如下結(jié)論:
①不論a為何值時(shí),l1與l2都互相垂直;
②當(dāng)a變化時(shí),l1與l2分別經(jīng)過定點(diǎn)A(0,1)和B(-1,0);
③不論a為何值時(shí),l1與l2都關(guān)于直線x+y=0對稱;
④不存在a的值,使l1與l2平行或重合.
其中所有正確的結(jié)論的序號為①②④.

查看答案和解析>>

同步練習(xí)冊答案