3.已知數(shù)列{an}是等差數(shù)列,其前n項(xiàng)和為Sn,且滿足a1+a5=10,S4=16;數(shù)列{bn}滿足:b1+3b2+32b3+..
.+3n-1bn=$\frac{n}{3}$,(n∈N*).
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=anbn+$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

分析 (Ⅰ)通過(guò)聯(lián)立a1+a5=10、S4=16可知首項(xiàng)和公差,進(jìn)而可知an=2n-1;通過(guò)作差可知當(dāng)n≥2時(shí)bn=$\frac{1}{{3}^{n}}$,進(jìn)而可得結(jié)論;
(Ⅱ)通過(guò)(I)及錯(cuò)位相減法計(jì)算可知數(shù)列{anbn}的前n項(xiàng)和和為Pn=1-(n+1)$\frac{1}{{3}^{n}}$,通過(guò)裂項(xiàng)、利用并項(xiàng)相加法可知數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和Qn=$\frac{n}{2n+1}$,進(jìn)而計(jì)算可得結(jié)論.

解答 解:(Ⅰ)依題意,$\left\{\begin{array}{l}{2{a}_{1}+4d=10}\\{4{a}_{1}+6d=16}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=2}\end{array}\right.$,
∴an=1+2(n-1)=2n-1;
∵b1+3b2+32b3+…+3n-1bn=$\frac{n}{3}$,
∴b1+3b2+32b3+…+3n-2bn-1=$\frac{n-1}{3}$(n≥2),
兩式相減得:3n-1bn=$\frac{n}{3}$-$\frac{n-1}{3}$=$\frac{1}{3}$,
∴bn=$\frac{1}{{3}^{n}}$(n≥2),
又∵b1=$\frac{1}{3}$滿足上式,
∴數(shù)列{bn}的通項(xiàng)公式bn=$\frac{1}{{3}^{n}}$;
(Ⅱ)記pn=anbn=(2n-1)$\frac{1}{{3}^{n}}$,其前n項(xiàng)和和為Pn,
則Pn=1•$\frac{1}{3}$+3•$\frac{1}{{3}^{2}}$+…+(2n-1)$\frac{1}{{3}^{n}}$,
$\frac{1}{3}$Pn=1•$\frac{1}{{3}^{2}}$+3•$\frac{1}{{3}^{3}}$+…+(2n-3)$\frac{1}{{3}^{n}}$+(2n-1)$\frac{1}{{3}^{n+1}}$,
兩式相減得:$\frac{2}{3}$Pn=$\frac{1}{3}$+2($\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$)-(2n-1)$\frac{1}{{3}^{n+1}}$
=2•$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$-$\frac{1}{3}$-(2n-1)$\frac{1}{{3}^{n+1}}$
=$\frac{2}{3}$[1-(n+1)$\frac{1}{{3}^{n}}$],
∴Pn=1-(n+1)$\frac{1}{{3}^{n}}$,
∵qn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴其前n項(xiàng)和Qn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)
=$\frac{n}{2n+1}$,
∵cn=anbn+$\frac{1}{{a}_{n}{a}_{n+1}}$,
∴Tn=Pn+Qn=1-(n+1)$\frac{1}{{3}^{n}}$+$\frac{n}{2n+1}$.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查錯(cuò)位相減法、裂項(xiàng)相消法,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.求過(guò)A(1,-1)且與圓C:x2+y2=100切于點(diǎn)B(8,6)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列函數(shù),既是偶函數(shù),又在區(qū)間(0,+∞)為單調(diào)遞增函數(shù)的是(  )
A.y=xB.y=x2-2xC.y=cosxD.y=2|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.某班有男同學(xué)27人,女同學(xué)18人,若用分層抽樣的方法從該班全體同學(xué)中抽取一個(gè)容量為20的樣本,則抽取女同學(xué)的人數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知實(shí)數(shù)4,m,9構(gòu)成一個(gè)等比數(shù)列,則圓錐曲線$\frac{{x}^{2}}{m}$+y2=1的離心率為$\sqrt{7}或\frac{{\sqrt{30}}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.甲、乙、丙3人站到共有6級(jí)的臺(tái)階上,若每級(jí)臺(tái)階最多站2人,同一級(jí)臺(tái)階上的人不區(qū)分站的位置,則不同的站法種數(shù)是210(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知f(x)=log2(4-ax)在區(qū)間[-1,3]上是增函數(shù),則a的取值范圍是-4<a<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.某公司對(duì)其50名員工的工作積極性和參加團(tuán)隊(duì)活動(dòng)的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)得到如下2×2列聯(lián)表:
積極參加團(tuán)隊(duì)活動(dòng)不太積極參加團(tuán)隊(duì)活動(dòng)合計(jì)
工作積極性高18725
工作積極性不高61925
合計(jì)242650
(參考數(shù)據(jù):
p(K2≥k0 0.025 0.010 0.005 0.001
k0 5.024 6.635 7.87910.828
K2=$\frac{m(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$ )
則至少有99.9%的把握可以認(rèn)為員工的工作積極性與參加團(tuán)隊(duì)活動(dòng)的態(tài)度有關(guān).(請(qǐng)用百分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.過(guò)點(diǎn)P(2,3),并且在兩軸上的截距互為相反數(shù)的直線方程為( 。
A.x-y+1=0或3x-2y=0B.x-y+1=0
C.x+y-5=0或3x-2y=0D.x+y-5=0

查看答案和解析>>

同步練習(xí)冊(cè)答案