7.如果實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{x-2y+2≥0}\\{2x-y-2≤0}\\{x+y-1≥0}\end{array}\right.$,則z=3x-2y的最小值為( 。
A.-4B.-2C.1D.2

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x-2y+2≥0}\\{2x-y-2≤0}\\{x+y-1≥0}\end{array}\right.$作出可行域如圖,

化z=3x-2y為$y=\frac{3}{2}x-\frac{z}{2}$,
由圖可知,當(dāng)直線$y=\frac{3}{2}x-\frac{z}{2}$過A(0,1)時(shí),直線在y軸上的截距最大,z有最小值為-2.
故選:B.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若不等式ax2+bx+c≤0的解集為{x|x≤1或x≥2},則點(diǎn)P(b,c)的軌跡是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直三棱柱ABC-A1B1C1中,AC=2,CB=CC1=4,∠BCA=90°,E、F、M、N分別是A1B1、AB、C1B1、CB的中點(diǎn),建立如圖所示的坐標(biāo)系.
(1)在平面ABB1A1內(nèi)找一點(diǎn)P,使△ABP為正三角形;
(2)能否在MN上求得點(diǎn)Q,使△AQB為以AB為斜邊的直角三角形?若能,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(2x-1)的定義域?yàn)閇-1,4],則函數(shù)f(x)的定義域?yàn)椋ā 。?table class="qanwser">A.(-3,7]B.[-3,7]C.(0,$\frac{5}{2}$]D.[0,$\frac{5}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.命題p:實(shí)數(shù)x滿足a<x<3a,其中a>0;q:實(shí)數(shù)x滿足2<x≤3.
(Ⅰ)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(Ⅱ)若q是p的充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)全集U=R,集合A={x|-1≤x<3},B={x|2x-4≤x-2}.
(Ⅰ)求A∩(∁UR);
(Ⅱ)若函數(shù)f(x)=lg(2x+a)的定義域?yàn)榧螩,滿足A⊆C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,有一塊矩形空地ABCD,要在這塊空地上開辟一個(gè)內(nèi)接四邊形EFGH為綠地,使其四個(gè)頂點(diǎn)分別落在矩形的四條邊上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,設(shè)AE=x,綠地EFGH面積為y.
(1)寫出y關(guān)于x的函數(shù)解析式,并求出它的定義域;
(2)當(dāng)AE為何值時(shí),綠地面積y最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)的定義域?yàn)镽,對(duì)任意實(shí)數(shù)x,y滿足f(x+y)=f(x)+f(y)+$\frac{1}{2}$,且f($\frac{1}{2}$)=0.給出以下結(jié)論:
①f(0)=-$\frac{1}{2}$;②f(-1)=-$\frac{3}{2}$;③f(x)為R上減函數(shù);④f(x)+$\frac{1}{2}$為奇函數(shù);
其中正確結(jié)論的序號(hào)是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知a、β為銳角,且3sin2a+2sin2β=1,3sin2a-2sin2β=0.求a+2β值.

查看答案和解析>>

同步練習(xí)冊(cè)答案