18.已知拋物線的方程為y2=8x,過其焦點F的直線l與拋物線交于A、B兩點,若S△AOF=S△BOF(O為坐標(biāo)原點),則|AB|=( 。
A.$\frac{16}{3}$B.8C.$\frac{4}{3}$D.4

分析 設(shè)A,B的縱坐標(biāo)為y1,y2,則由S△AOF=S△BOF,得到AB⊥x軸,即A(2,y1),則|y1|=4,問題得以解決.

解答 解:設(shè)A,B的縱坐標(biāo)為y1,y2,則由S△AOF=S△BOF,得$\frac{1}{2}$|OF||y1|=$\frac{1}{2}$|OF||y2|,即y1+y2=0,
即AB⊥x軸,即A(2,y1),則|y1|=4,所以|AB|=8.
故選:B.

點評 本題考查了拋物線的定義、直線與拋物線相交問題、三角形面積之比,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|x-a|-$\frac{a}{2}$lnx,a∈R,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$為單位向量,且$\overrightarrow{{e}_{3}}$=$\frac{1}{2}$$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$,(k>0),若以向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$為兩邊的三角形的面積為$\frac{1}{2}$,則k的值為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={(x,y)|$\sqrt{\frac{{x}^{2}}{9}}+\sqrt{\frac{{y}^{2}}{4}}≤1$},B={(x,y)|x-2y≤0},區(qū)域M=A∩B,則區(qū)域M的面積為(  )
A.6B.8C.12D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在平面直角坐標(biāo)系中xOy中,直線l的斜率為k且過點(0,$\sqrt{2}$),直線l與橢圓C:$\frac{{x}^{2}}{2}+{y}^{2}=1$相交于兩點P和Q.
(Ⅰ)求斜率k的取值范圍;
(Ⅱ)若點M為線段PQ的中點,橢圓C分別與x軸正半軸、y軸正半軸交于點A、B,問是否存在斜率k,使得$\overrightarrow{OM}$與$\overrightarrow{AB}$共線?如果存在,求出k的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)命題α:x>0,命題β:x>m,若α是β的充分條件,則實數(shù)m的取值范圍是(-∞,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.解不等式組:$\left\{\begin{array}{l}{\frac{2}{x-2}<-1}\\{1<|x|<3}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知在各項均為正數(shù)的等比數(shù)列{an}中,a1=2,且2a1,a3,3a2成等差數(shù)列.
(Ⅰ)求等比數(shù)列{an}的通項公式;
(Ⅱ)若cn=an•($\frac{2}{n+1}-λ$),n=1,2,3,…,且數(shù)列{cn}為單調(diào)遞減數(shù)列,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某學(xué)生四次模擬考試時,其英語作文的減分情況如下表:
考試次數(shù)x1234
所減分?jǐn)?shù)y4.5432.5
顯然所減分?jǐn)?shù)y與模擬考試次數(shù)x之間有較好的線性相關(guān)關(guān)系,參考公式:
$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{x}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,$\overline{x}$=$\frac{1}{n}$$\sum_{i=1}^{n}$xi,$\overline{y}$=$\frac{1}{n}$$\sum_{i=1}^{n}$yi
則其回歸線性方程為$\widehat{y}$=-0.7x+5.25.

查看答案和解析>>

同步練習(xí)冊答案