4.近年來(lái),房?jī)r(jià)不斷上漲,某縣2010年4月份的房?jī)r(jià)平均每平方米為3600元,比2008年同期的房?jī)r(jià)平均每平方米上漲了2000元,假設(shè)這兩年該縣房?jī)r(jià)的平均增長(zhǎng)率為x,則關(guān)于x的方程為(  )
A.(1+x)2=2000B.2000(1+x)2=3600
C.(3600-2000)(1+x)=3600D.(3600-2000)(1+x)2=3600

分析 通過(guò)2008年4月份的房?jī)r(jià)及這兩年該縣房?jī)r(jià)的平均增長(zhǎng)率為x,計(jì)算即得結(jié)論.

解答 解:依題意,2008年4月份的房?jī)r(jià)平均每平方米為(3600-2000)元,
∵這兩年該縣房?jī)r(jià)的平均增長(zhǎng)率為x,
∴(3600-2000)(1+x)2=3600,
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)模型的選擇與應(yīng)用,考查分析問(wèn)題、解決問(wèn)題的能力,注意解題方法的積累,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年湖南益陽(yáng)市高二9月月考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

設(shè)數(shù)列{an}滿足a1+2a2=3,且對(duì)任意的n∈N*,點(diǎn)Pn(n,an)都有向量PnPn+1=(1,2),則{an}的前n項(xiàng)和Sn為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.一物體的運(yùn)動(dòng)方程為s=t2-t+5,其中s的單位是米,t的單位是秒,那么物體在4秒末的瞬時(shí)速度是( 。
A.7米/秒B.6米/秒C.5米/秒D.8米/秒

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知角α的終邊經(jīng)過(guò)點(diǎn)P(-6m,8m)(m<0),則2sinα+cosα的值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.?dāng)?shù)列{an}的通項(xiàng)為an=$\left\{\begin{array}{l}{{2}^{n}-1,n≤4}\\{-{n}^{2}+(a-1)n,n≥5}\end{array}\right.$,n∈N*,若a5是{an}中的最大值,則a取值范圍是[9,12].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.有一種螃蟹,從海上捕獲后不放養(yǎng),最多只能存活兩天.如果放養(yǎng)在塘內(nèi),可以延長(zhǎng)存活時(shí)間,但每天也有一定數(shù)量的蟹死去.假設(shè)放養(yǎng)期內(nèi)蟹的個(gè)體質(zhì)量基本保持不變,現(xiàn)有一經(jīng)銷商,按市場(chǎng)價(jià)收購(gòu)這種活蟹1000kg放養(yǎng)在塘內(nèi),此時(shí)市場(chǎng)價(jià)為每千克30元,據(jù)測(cè)算,此后每千克活蟹的市場(chǎng)價(jià)每天可上升1元,但是,放養(yǎng)一天需支出各種費(fèi)用為400元,且平均每天還有10kg蟹死去,假定死蟹均于當(dāng)天全部銷售出,售價(jià)都是每千克20元.
(1)設(shè)x天后每千克活蟹的市場(chǎng)價(jià)為p元,寫(xiě)出p關(guān)于x的函數(shù)關(guān)系式;
(2)如果放養(yǎng)x天后將活蟹一次性出售,并記1000kg蟹的銷售總額為Q元,寫(xiě)出Q關(guān)于x的函數(shù)關(guān)系式;
(3)該經(jīng)銷商將這批蟹放養(yǎng)多少天后出售,可獲最大利潤(rùn)(利潤(rùn)=Q-收購(gòu)總額-放養(yǎng)支出的各種費(fèi)用)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.過(guò)點(diǎn)P(3,0)有一條直線l,它夾在兩條直線l1:2x-y-2=0與l2:x+y+3=0之間的線段恰被點(diǎn)P平分,則直線l方程為( 。
A.6x-y-18=0B.8x-y-24=0C.5x-2y-15=0D.8x-3y-24=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,某小區(qū)有一矩形地塊OABC,其中OC=2,OA=3,單位:百米.已知 O EF是一個(gè)游泳池,計(jì)劃在地塊OABC內(nèi)修一條與池邊 EF相切于點(diǎn) M的直路l(寬度不計(jì)),交線段OC于點(diǎn)D,交線段OA于點(diǎn) N.現(xiàn)以點(diǎn) O為坐標(biāo)原點(diǎn),以線段 OC所在直線為x軸,建立平面直角坐標(biāo)系,若池邊 EF滿足函數(shù)y=-x2+2($0≤x≤\sqrt{2}$)的圖象.若點(diǎn) M到y(tǒng)軸距離記為t.
(1)當(dāng)$t=\frac{2}{3}$時(shí),求直路l所在的直線方程;
(2)當(dāng)t為何值時(shí),地塊OABC在直路l不含泳池那側(cè)的面積取到最大,最大值時(shí)多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.己知拋物線C1:x2=2py(p>0)與圓C2:x2+y2=5的兩個(gè)交點(diǎn)之間的距離為4.
(Ⅰ)求p的值;
(Ⅱ)設(shè)過(guò)拋物線C1的焦點(diǎn)F且斜率為k的直線與拋物線交于A,B兩點(diǎn),與圓C2交于C,D兩點(diǎn),當(dāng)k∈[0,1]時(shí),求|AB|•|CD|的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案