4.在復數(shù)集中因式分解x4+3x2-10=(x$+\sqrt{2}$i)(x-$\sqrt{2}i$)(x+$\sqrt{5}$)(x-$\sqrt{5}$).

分析 配方后使用平方差公式分解,

解答 解:x4+3x2-10=(x2-$\frac{3}{2}$)2-$\frac{49}{4}$=(x2-$\frac{3}{2}$+$\frac{7}{2}$)(x2-$\frac{3}{2}$-$\frac{7}{2}$)=(x2+2)(x2-5)=(x$+\sqrt{2}$i)(x-$\sqrt{2}i$)(x+$\sqrt{5}$)(x-$\sqrt{5}$).
故答案為(x$+\sqrt{2}$i)(x-$\sqrt{2}i$)(x+$\sqrt{5}$)(x-$\sqrt{5}$).

點評 本題考查了復數(shù)的運算,因式分解,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.已知:實系數(shù)一元二次方程x2+px+q=0有虛根α=-1+$\sqrt{3}$i,另一根為β.
(1)求:實數(shù)p,q的值;
(2)求:α22的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知${∫}_{0}^{1}$exdx=e-1,${∫}_{0}^{1}$x2dx=$\frac{1}{3}$.求下列定積分:
(1)${∫}_{0}^{1}$(ex+x2)dx;
(2)${∫}_{0}^{1}$(2ex-x2)dx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.時鐘從3時走到4時20分,分針轉(zhuǎn)了( 。
A.20°B.480°C.80°D.28800°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知P,Q分別在∠AOB的兩邊OA,OB上,∠AOB=$\frac{π}{3}$,△POQ的面積為8,則PQ中點M的極坐標方程為( 。
A.ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0<θ<$\frac{π}{3}$)B.ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0≤θ<$\frac{π}{3}$)
C.ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0<θ≤$\frac{π}{3}$)D.ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0≤θ≤$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知$\overrightarrow{a}$,$\overrightarrow$是兩個不共線的非零向量,若8$\overrightarrow{a}$-5$\overrightarrow$與k$\overrightarrow{a}$+2$\overrightarrow$共線,則實數(shù)k=-$\frac{16}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知集合A={f(x)|f(x)=xln(ax)}和B={h(x)|h(x)=$\frac{x}{{e}^{x}}$-$\frac{2}{e}$}的交集有且只有2個子集.
(1)求實數(shù)a的值;
(2)若對于任意的x∈[1,+∞),f(x)≤m(x2-1)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設集合U={x|x是小于9的正整數(shù)},集合A={1,2,3},集合B={3,4,5,6},則A∩(∁UB)=( 。
A.{1,2,3}B.{1,2}C.{1,3}D.{2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知直線$\sqrt{2}$ax+by=1(其中a,b為非零實數(shù)),與圓x+y2=1相交于A,B兩點,O為坐標原點,且△AOB為直角三角形,則$\frac{1}{{a}^{2}}$+$\frac{2}{^{2}}$的最小值為( 。
A.4B.2$\sqrt{2}$C.5D.8

查看答案和解析>>

同步練習冊答案