已知x,y,z∈R+,且x+y+z=1,x2+y2+z2
xyz
≤1恒成立,求λ的最大值.
考點(diǎn):基本不等式在最值問題中的應(yīng)用
專題:綜合題,不等式的解法及應(yīng)用
分析:由題設(shè)條件得λ≤
1-(x2+y2+z2)
xyz
=
2(xy+yz+xz)
xyz
,求出右邊的最小值,即可求λ的最大值.
解答: 解:由題設(shè)條件得λ≤
1-(x2+y2+z2)
xyz
=
2(xy+yz+xz)
xyz

據(jù)不等式(a+b+c)2≥3(ab+bc+ca)得(xy+yz+zx)2≥3xyz(x+y+z)=3xyz,
所以xy+yz+zx≥
3xyz

因此
2(xy+yz+xz)
xyz
≥2
3

所以只要λ≤2
3
即可,
所以λ的最大值為2
3
點(diǎn)評:本題考查基本不等式在最值問題中的應(yīng)用,考查恒成立問題,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

平面向量
a
b
的夾角為60°,
a
=(1,0),|
b
|=1,則
a
•(
a
-3
b
)等于( 。
A、
1
2
B、-
1
2
C、
5
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在“十一”期間,某電器專賣店設(shè)計了一項(xiàng)家用小型空調(diào)有獎促銷活動,每購買一臺空調(diào),即可通過電腦產(chǎn)生一組3個數(shù)的隨機(jī)數(shù)組,并根據(jù)下表兌獎:
獎次一等獎二等獎三等獎
隨機(jī)數(shù)組特征3個8或3個1只有2個8或只有2個1只有一個8或只有1個1
獎金(單位:元)4m2mm
商家為了解計劃的可行性,以便估計獎金數(shù),進(jìn)行了隨機(jī)模擬試驗(yàn)產(chǎn)生了20組隨機(jī)數(shù),每組三個數(shù),試驗(yàn)結(jié)果如下:247,235,145,124,754,353,296,658,379,011,521,356,208,954,245,364,135,888,357,265.
(Ⅰ)在以上20組數(shù)中,隨機(jī)抽取3組數(shù),求至少有一組獲獎的概率;
(Ⅱ)根據(jù)上述模擬試驗(yàn)的結(jié)果,將頻率視為概率:
①若活動期間,某人購買3臺空調(diào),求恰好有一臺中獎的概率;
②若本次活動計劃平均每臺空調(diào)的獎金不超過300元,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)底面直徑和高都是4厘米的圓柱的內(nèi)切球?yàn)镺.
(1)求球O的體積和表面積;
(2)與底面距離為1的平面和球的截面圓為M,AB是圓M內(nèi)的一條弦,其長為2
3
,求AB兩點(diǎn)間的球面距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-alnx(a∈R).
(Ⅰ)當(dāng)a=2e時,求函數(shù)f(x)的單調(diào)區(qū)間;(e為自然對數(shù)的底數(shù))
(Ⅱ)若函數(shù)f(x)在(1,+∞)內(nèi)有零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知AB=2,BC=3,∠ABC=60°,AH⊥BC于H,M為AH的中點(diǎn),若
AM
AB
BC
,則λ+μ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)F(x)=lnx-ax-
a-1
x
+1.
(1)若曲線y=F(x)在點(diǎn)(2,F(xiàn)(2))處的切線垂直于y軸,求實(shí)數(shù)a的值;
(2)若0≤a≤
1
2
,求函數(shù)F(x)的單調(diào)區(qū)間;
(3)若曲線y=F(x)(x∈[1,2])上任意兩點(diǎn)(x1,F(xiàn)(x1)),(x2,F(xiàn)(x2))的連線的斜率恒大于-a-1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x-4
+
5-x
的最大值為M.
(Ⅰ)求實(shí)數(shù)M的值;
(Ⅱ)求關(guān)于x的不等式|x-1|+|x+2|≤M的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)在R上的圖象是一條連貫的曲線,且對于?∈R,f′(x)均存在,當(dāng)x≠0時,f′(x)+
f(x)
x
>0,則關(guān)于x的函數(shù)g(x)=f(x)+
1
x
的零點(diǎn)的個數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案