【題目】某中學調查防疫期間學生居家每天鍛煉時間情況,從高一、高二年級學生中分別隨機抽取100人,由調查結果得到如下的頻率分布直方圖:

(Ⅰ)寫出頻率分布直方圖(高一)中的值;記高一、高二學生100人鍛煉時間的樣本的方差分別為,,試比較,的大小(只要求寫出結論);

(Ⅱ)估計在高一、高二學生中各隨機抽取1人,恰有一人的鍛煉時間大于20分鐘的概率;

(Ⅲ)由頻率分布直方圖可以認為,高二學生鍛煉時間服從正態(tài)分布.其中近似為樣本平均數(shù),近似為樣本方差,且每名學生鍛煉時間相互獨立,設表示從高二學生中隨機抽取10人,其鍛煉時間位于的人數(shù),求的數(shù)學期望.

注:①同一組數(shù)據(jù)用該區(qū)間的中點值作代表,計算得

②若,則,

【答案】(Ⅰ),;(Ⅱ)0.42(Ⅲ)6.826

【解析】

(I)根據(jù)圖中的數(shù)據(jù)即可判斷方差的大小,利用頻率總和為1即可求出的值;

(II)先設設事件:在高一學生中隨機抽取1人,其鍛煉時間不大于20分鐘,事件:在高二學生中隨機抽取1人,其鍛煉時間不大于20分鐘,根據(jù)圖形數(shù)據(jù)可得到它們的概率,而恰有一人的鍛煉時間大于20分鐘分兩種情況:一種是這個人在高一;另一種是這個人在高二;再不出它們的概率和即可;

(III)利用所給的數(shù)據(jù)分別求出樣本平均數(shù)和樣本方差,代入公式即可求出概率和數(shù)學期望.

解:(Ⅰ),

(Ⅱ)設事件:在高一學生中隨機抽取1人,其鍛煉時間不大于20分鐘,

事件:在高二學生中隨機抽取1人,其鍛煉時間不大于20分鐘,

事件:在高一、高二學生中隨機抽取1人,恰有一個學生鍛煉時間大于20分鐘,且另一個不大于20分鐘,

,

(Ⅲ),由條件得,

從而,

從高二中隨機抽取10人,其鍛煉時間值位于的概率是06826,

根據(jù)題意得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形為菱形,且,,點在面上的投影恰在上,點中點.

1)求證:為線段的中點;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)證明:;

2)(i)證明:當時,對任意,總有

ii)討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市舉行中學生詩詞大賽,分初賽和復賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區(qū)間內(nèi),其頻率分布直方圖如圖.

Ⅰ)求獲得復賽資格的人數(shù);

Ⅱ)從初賽得分在區(qū)間的參賽者中,利用分層抽樣的方法隨機抽取人參加學校座談交流,那么從得分在區(qū)間各抽取多少人?

Ⅲ)從(Ⅱ)抽取的人中,選出人參加全市座談交流,設表示得分在區(qū)間中參加全市座談交流的人數(shù),求的分布列及數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為,直線的參數(shù)方程為為參數(shù)).

1)求曲線的參數(shù)方程與直線的普通方程;

2)設點過為曲線上的動點,點和點為直線上的點,且滿足為等邊三角形,求邊長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求函數(shù)在區(qū)間上的最值;

2)若函數(shù)上是單調函數(shù),求實數(shù)的取值范圍;

3)若不等式在區(qū)間上恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)fx)在其圖象上存在不同的兩點Ax1y1),Bx2y2),其坐標滿足條件:|x1x2+y1y2|的最大值為0,則稱fx)為“柯西函數(shù)”,則下列函數(shù):

fx)=xx0);

fx)=lnx0x3);

fx)=cosx;

fx)=x21.

其中為“柯西函數(shù)”的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,半焦距為,過點軸、軸的垂線,垂足分別點,且四邊形的面積為2.

1)求橢圓的標準方程;

2)已知經(jīng)過點的直線與橢圓交于,兩點,設直線與直線的傾斜角分別為,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—4:坐標系與參數(shù)方程。

已知曲線Ct為參數(shù)), C為參數(shù))。

1)化CC的方程為普通方程,并說明它們分別表示什么曲線;

2)若C上的點P對應的參數(shù)為QC上的動點,求中點到直線

t為參數(shù))距離的最小值。

查看答案和解析>>

同步練習冊答案