A. | n2+n | B. | 2n2+2n | C. | n2-n | D. | 2n2-2n |
分析 由已知列式求得a,得到等差數(shù)列的三項(xiàng)和公差,求出其前n項(xiàng)和,代入bn=$\frac{{S}_{n}}{n}$,再由等差數(shù)列的前n項(xiàng)和求
b3+b7+b11+…+b4n-1的值.
解答 解:由a-1,4,2a為等差數(shù)列的前三項(xiàng),得a-1+2a=8,解得a=3.
∴等差數(shù)列{an}的首項(xiàng)為2,公差為2,
∴${S}_{n}=2n+\frac{n(n-1)×2}{2}={n}^{2}+n$.
則bn=$\frac{{S}_{n}}{n}$=$\frac{{n}^{2}+n}{n}=n+1$,
∴b3=4,
b3+b7+b11+…+b4n-1=4n+$\frac{n(n-1)×4}{2}$=2n2+2n.
故選:B.
點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式,考查等差數(shù)列的前n項(xiàng)和,是基礎(chǔ)的計(jì)算題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
A. | 95% | B. | 99% | C. | 97.5% | D. | 90% |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | 1或-$\frac{1}{2}$ | D. | 1或$\frac{1}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com