14.已知函數(shù)f(x)的圖象關(guān)于(1,0)對稱,當(dāng)x>1時,f(x)=loga(x-1),且f(3)=-1,若x1+x2<2,(x1-1)(x2-1)<0,則(  )
A.f(x1)+f(x2)<0B.f(x1)+f(x2)>0C.f(x1)+f(x2)可能為0D.f(x1)+f(x2)可正可負(fù)

分析 根據(jù)已知,分析出函數(shù)的單調(diào)性,結(jié)合函數(shù)的對稱性,可得結(jié)論.

解答 解:∵當(dāng)x>1時,f(x)=loga(x-1),
f(3)=loga2=-1,
∴a=$\frac{1}{2}$,
故函數(shù)f(x)在(1,+∞)上為減函數(shù),
若x1+x2<2,(x1-1)(x2-1)<0,
不妨令x1<1,x2>1,則x2<2-x1
f(x2)>f(2-x1),
又∵函數(shù)f(x)的圖象關(guān)于(1,0)對稱,
∴f(x1)=-f(2-x1),
此時f(x1)+f(x2)=-f(2-x1)+f(x2)>0,
故選:B

點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)的圖象和性質(zhì),分析出函數(shù)的單調(diào)性和對稱性,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x3-ax2,其中x∈R,a為參數(shù)
(1)記函數(shù)g(x)=$\frac{1}{6}$f′(x)+lnx,討論函數(shù)g(x)的單調(diào)性;
(2)若曲線y=f(x)與x軸正半軸有交點(diǎn)且交點(diǎn)為P,曲線在點(diǎn)P處的切線方程為y=g(x),求證:對于任意的正實(shí)數(shù)x,都有f(x)≥g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.定義:max{a,b}=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$,若實(shí)數(shù)x,y滿足:|x|≤3,|y|≤3,-4x≤y≤$\frac{2}{3}$x,則max{|3x-y|,x+2y}的取值范圍是( 。
A.[$\frac{21}{4}$,7]B.[0,12]C.[3,$\frac{21}{4}$]D.[0,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知點(diǎn)P是圓O外的一點(diǎn),過P作圓O的切線PA,PB,切點(diǎn)為A,B,過P作一割線交圓O于點(diǎn)E,F(xiàn),若2PA=PF,取PF的中點(diǎn)D,連接AD,并延長交圓于H.
(1)求證:O,A,P,B四點(diǎn)共圓;
(2)求證:PB2=2AD•DH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某多面體的三視圖,則該多面體的體積為$\frac{32}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,AB是圓O的直徑,C為AB的延長線上一點(diǎn),切線CD交圓O于點(diǎn)D,∠ACD的平分線分別交DB,DA于點(diǎn)E,F(xiàn).
(1)求證:DE=DF;
(2)若DA=DC,AC=4,求CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.給出最小二乘法下的回歸直線方程$\widehat{y}$=$\widehat$x+$\widehat{a}$系數(shù)公式:
$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$
假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬元),有如表的統(tǒng)計(jì)資料:
使用年限x (年)23456
維修費(fèi)用y(萬元)2.23.85.56.57.0
若由資料可知y對x呈線性相關(guān)關(guān)系,試求:
(1)線性回歸直線方程;
(2)根據(jù)回歸直線方程,估計(jì)使用年限為12年時,維修費(fèi)用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=$\frac{lnx+(x-b)^{2}}{x}$(b∈R).若存在x∈[$\frac{1}{2}$,2],使得f(x)>-x•f′(x),則實(shí)數(shù)b的取值范圍是(-∞,$\frac{9}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知a,b,c滿足a<b<c,且ac<0,則下列不等關(guān)系中不滿足恒成立條件的是(  )
A.$\frac{b-c}{a}$>0B.$\frac{a}{c}$<$\frac{c}$C.$\frac{c-a}{ac}$<0D.$\frac{{c}^{2}}{a}$<$\frac{^{2}}{a}$

查看答案和解析>>

同步練習(xí)冊答案