9.(普通班)已知數(shù)列{an}的前n項和Sn=n2+2n(n∈N+).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n項和.

分析 (I)利用遞推關系即可得出;
(II)利用“裂項求和”即可得出.

解答 解:(Ⅰ)∵Sn=n2+2n(n∈N+),
∴當n=1時,a1=3.
當n≥2時,an=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+1,
又n=1時滿足上式,
∴an=2n+1.
(Ⅱ)∵$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$,
∴數(shù)列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n項和=$\frac{1}{2}[(\frac{1}{3}-\frac{1}{5})$+$(\frac{1}{5}-\frac{1}{7})$+…+$(\frac{1}{2n+1}-\frac{1}{2n+3})]$=$\frac{n}{3(2n+3)}$.

點評 本題考查了“裂項求和”方法、遞推關系,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.以下命題正確的是( 。
A.經過空間中的三點,有且只有一個平面
B.空間中,如果兩個角的兩條邊分別對應平行,那么這兩個角相等
C.空間中,兩條異面直線所成角的范圍是(0,$\frac{π}{2}$]
D.如果直線l平行于平面α內的無數(shù)條直線,則直線l平等于平面α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.計算:
(1)sin(-1200°)cos 1290°+cos(-1020°)•sin(-1050°)
(2)log28+lg0.01+ln$\sqrt{e}+{2^{-1+{{log}_2}^3}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.直線a,b和平面α,β滿足α∥β,a?α,b?β,則直線a,b的關系是( 。
A.平行B.相交C.異面D.平行或異面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.由直線y=2x及曲線y=4-2x2圍成的封閉圖形的面積為( 。
A.1B.3C.6D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.(普通班)已知數(shù)列{an}滿足a1=2,對于任意的n∈N+都有an>0,且(n+1)an2+anan+1-nan+12=0,又知數(shù)列{bn}:bn=2n-1+an-1.
(1)求數(shù)列{an}的通項an以及它的前n項和Sn;
(2)求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x+1(x≤0)}\\{lnx(x>0)}\end{array}\right.$,則函數(shù)y=f[f(x)]+1的零點個數(shù)是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知圓C:x2+y2-2y-4=0,直線l:mx-y+1-m=0(m∈R),且直線l與圓C交于A、B兩點.
(1)直線l橫過定點P,求點P的坐標;
(2)若|AB|=$\sqrt{17}$,求m的值;
(3)求弦AB的中點M的軌跡方程,并說明其軌跡的什么圖形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.利用定義求sin$\frac{5π}{4}$、cos$\frac{5π}{4}$、tan$\frac{5π}{4}$的值.

查看答案和解析>>

同步練習冊答案