14.函數(shù)y=2lnx+1在點(diǎn)(1,1)處的切線方程為2x-y-1=0.

分析 求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,運(yùn)用點(diǎn)斜式方程即可得到切線方程.

解答 解:函數(shù)y=2lnx+1的導(dǎo)數(shù)為y′=$\frac{2}{x}$,
即有在點(diǎn)(1,1)處的切線斜率為k=2,
函數(shù)y=2lnx+1在點(diǎn)(1,1)處的切線方程為y-1=2(x-1),
即為2x-y-1=0.
故答案為:2x-y-1=0.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線方程,主要考查導(dǎo)數(shù)的幾何意義:函數(shù)在某點(diǎn)處的導(dǎo)數(shù)即為曲線在該點(diǎn)處切線的斜率,正確求導(dǎo)和運(yùn)用點(diǎn)斜式方程是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知全集U={1,3,5,7},集合A={1,3},B={5,3},則∁U(A∩B)=(  )
A.{1,5,7}B.{1,3,5}C.3{}D.{7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若△ABC外接圓的圓心為O,半徑為4,$\overrightarrow{OA}$+2$\overrightarrow{AB}$+2$\overrightarrow{AC}$=$\overrightarrow{0}$,則$\overrightarrow{CA}$在$\overrightarrow{CB}$方向上的投影為( 。
A.1B.$\sqrt{7}$C.$\sqrt{15}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知x,y滿足條件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,則z=$\frac{y-1}{x+3}$的最大值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知θ∈(-$\frac{π}{2}$,0)且3tanθ•cosθ=-2,則cosθ的值為(  )
A.$\frac{4\sqrt{2}}{9}$B.$\frac{\sqrt{5}}{3}$C.$\frac{2\sqrt{2}}{3}$D.$\frac{2\sqrt{2}}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.曲線|x|+y2-3y=0的對(duì)稱軸方程是x=0,y的取值范圍是[0,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知△ABC內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若c2=a2+b2+2abcosC,則C=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是( 。
A.(18π-20)cm3B.(24π-20)cm3cm3C.(18π-28)cm3D.(24π-28)cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知ABCDEF為正六邊形,若向量$\overrightarrow{AB}$=($\sqrt{3}$,-1),則|$\overrightarrow{DC}$-$\overrightarrow{DE}$|=$2\sqrt{3}$;$\overrightarrow{EC}$+$\overrightarrow{FE}$=$(2\sqrt{3},-2)$.(用坐標(biāo)表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案