分析 由函數(shù)f(x)=x3-12x在(2m,m+1)內(nèi)單調(diào)遞減轉(zhuǎn)化成f′(x)≤0在(2m,m+1)內(nèi)恒成立,得到關于m的關系式,即可求出m的范圍.
解答 解:∵函數(shù)f(x)=x3-12x在(2m,m+1)上單調(diào)遞減,
∴f'(x)=3x2-12≤0在(2m,m+1)上恒成立.
故 $\left\{\begin{array}{l}f′(2m)≤0\\ f′(m+1)≤0\\ 2m<m+1\end{array}\right.$,即$\left\{\begin{array}{l}8{m}^{3}-24m≤0\\(m+1)^{3}-12(m+1)≤0\\ 2m<m+1\end{array}\right.$成立.
解得-1≤m<1
故答案為:[-1,1).
點評 此題主要考查利用導函數(shù)的正負判斷原函數(shù)的單調(diào)性,考查函數(shù)的恒成立,轉(zhuǎn)化思想的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{π}{4}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | -$\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若x>1,則x=2 | B. | 若x=2,則x≤1 | C. | 若x≠2,則x≤1 | D. | 若x≤1,則x≠2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{1}{2},-\frac{1}{2},\frac{1}{2}$ | B. | $-\frac{1}{2},\frac{1}{2},-\frac{1}{2}$ | C. | $\frac{1}{2},\frac{1}{2},-\frac{1}{2}$ | D. | $\frac{1}{2},-\frac{1}{2},\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com