18.化簡(jiǎn):$\frac{sin(3π-α)tan(α+π)cot(-α-π)}{cos(π-α)tan(3π-α)}$.

分析 直接利用三角函數(shù)的誘導(dǎo)公式化簡(jiǎn)求值.

解答 解:$\frac{sin(3π-α)tan(α+π)cot(-α-π)}{cos(π-α)tan(3π-α)}$
=$\frac{sin(π-α)tanα[-cot(π+α)]}{cos(π-α)tan(π-α)}$
=$\frac{sinαtanα(-cotα)}{-cosα(-tanα)}$
=-1.

點(diǎn)評(píng) 本題考查三角函數(shù)的化簡(jiǎn)求值,考查了誘導(dǎo)公式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在正方體中,E,F(xiàn)是棱A′B′與D′C′的中點(diǎn),求面EBCF與面ABCD所成二面角的正切值.(取銳角)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若?x∈(0,+∞),都有xf′(x)<2f(x)成立,則( 。
A.2f($\sqrt{3}$)>3f($\sqrt{2}$)B.2f(1)<3f($\sqrt{2}$)C.4f($\sqrt{3}$)<3f(2)D.4f(1)>f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知二次函數(shù)y=3x2-12x+18,求該函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,曲線C的極坐標(biāo)方程為ρ=$\frac{sinθ}{co{s}^{2}θ}$.
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)過點(diǎn)P(0,2)作斜率為1直線l與曲線C交于A,B兩點(diǎn),試求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知sin(5π-θ)+sin($\frac{5π}{2}$-θ)=$\frac{\sqrt{7}}{2}$.求:
(1)sin3($\frac{π}{2}$+θ)-cos3($\frac{3π}{2}$-θ);
(2)sin4($\frac{π}{2}$-θ)+cos4($\frac{7π}{2}$+θ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,cosA=$\frac{1}{3}$,3sinB=2sinC,且△ABC的面積為2$\sqrt{2}$,則邊BC的長(zhǎng)為(  )
A.2$\sqrt{3}$B.3C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(a+$\frac{1}{a}$)x2+x(a>0)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知A(-3,0),B(0,4),M是圓C:(x-2)2+y2=1上一個(gè)動(dòng)點(diǎn),則△MAB的面積的最小值為( 。
A.4B.5C.7.5D.10

查看答案和解析>>

同步練習(xí)冊(cè)答案