17.已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(x)在[0,+∞)上單調(diào)遞減,若f(m)>f(1-m),則實數(shù)m的取值范圍是(-∞,$\frac{1}{2}$).

分析 由條件利用函數(shù)的奇偶性和單調(diào)性可得|m|<|1-m|,由此求得m的范圍.

解答 解:∵函數(shù)f(x)是定義在R上的偶函數(shù),∴f(x)的圖象關(guān)于y軸對稱.
∵f(x)在[0,+∞)上單調(diào)遞減,∴f(x)在(-∞,0]上單調(diào)遞增,
若f(m)>f(1-m),則|m|<|1-m|,∴m<$\frac{1}{2}$,
故答案為:$(-∞,\frac{1}{2})$.

點評 本題主要考查函數(shù)的奇偶性和單調(diào)性的綜合應(yīng)用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

7.把極坐標方程ρ=sinθ+cosθ化成直角坐標標準方程是(x-$\frac{1}{2}$)2+(y-$\frac{1}{2}$)2=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在△ABC中,角A,B,C所對的邊分別為a,b,c,向量$\overrightarrow{m}$=($\sqrt{3}$cos$\frac{A}{2}$,sin$\frac{A}{2}$),$\overrightarrow{n}$=(-cos$\frac{B}{2}$,$\sqrt{3}$sin$\frac{B}{2}$),且滿足$\overrightarrow{m}$•$\overrightarrow{n}$=-$\frac{\sqrt{3}}{2}$.
(Ⅱ)求角C的大;
(Ⅱ)若△ABC的面積為$\frac{\sqrt{3}}{4}$,且a-b=2,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知集合A={x∈R|-2<x<1},B={x∈R|x2-2x<0},那么A∩B=( 。
A.(-2,0)B.(-2,1)C.(0,2)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.使“a>b”成立的一個充分不必要條件是( 。
A.a>b+1B.$\frac{a}$>1C.a2>b2D.a3>b3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.D是△ABC所在平面內(nèi)一點,$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(λ,μ∈R),則0<λ<1,0<μ<1是點D在△ABC內(nèi)部(不含邊界)的(  )
A.充分不必要條件B.必要不充分條件
C.充分且必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)是R上的偶函數(shù),在(-3,-2)上為減函數(shù)且對?x∈R都有f(2-x)=f(x),若A,B是鈍角三角形ABC的兩個銳角,則( 。
A.f(sinA)<f(cosB)B.f(sinA)>f(cosB)
C.f(sinA)=f(cosB)D.f(sinA)與與f(cosB)的大小關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an}滿足:a1=3,$\sqrt{{a_{n+1}}+1}-\sqrt{{a_n}+1}=1({n∈{N^+}})$.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=(-1)nan(n∈N+),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.函數(shù)f(x)=$\frac{1}{{\sqrt{{2^{x-1}}-1}}}$的定義域為(  )
A.(0,1)B.(0,1]C.[1,+∞)D.(1,+∞)

查看答案和解析>>

同步練習冊答案