1.log2sin$\frac{π}{12}$+log2sin$\frac{π}{6}$+log2sin$\frac{5}{12}$π=( 。
A.-3B.-1C.1D.3

分析 利用對(duì)數(shù)的運(yùn)算法則以及誘導(dǎo)公式,二倍角的正弦函數(shù)化簡(jiǎn)求解即可.

解答 解:log2sin$\frac{π}{12}$+log2sin$\frac{π}{6}$+log2sin$\frac{5}{12}$π=log2(sin$\frac{π}{12}$sin$\frac{π}{6}$sin$\frac{5}{12}$π)=log2(cos$\frac{5}{12}π$sin$\frac{π}{6}$sin$\frac{5}{12}$π)=log2($\frac{1}{2}$cos$\frac{5}{12}π$sin$\frac{5}{12}$π)=log2($\frac{1}{4}$sin$\frac{5}{6}$π)=log2$\frac{1}{8}$=-3.
故選:A.

點(diǎn)評(píng) 本題考查二倍角公式以及誘導(dǎo)公式,對(duì)數(shù)運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.高二舉行了一次語文知識(shí)競(jìng)賽,其中一題為連線題,要求將4位文學(xué)家與它們的作品一對(duì)一連線,規(guī)定每連對(duì)一條得5分,連錯(cuò)一條得-2分,某同學(xué)隨機(jī)用4條線將文學(xué)家與作品一對(duì)一連接起來.
(1)求該同學(xué)恰好連對(duì)一題的概率P1;
(2)求該同學(xué)得分不低于6分的概率P2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若函數(shù)f(x)=$\left\{\begin{array}{l}{a^x},x>1\\(4-\frac{a}{3})x+4,x≤1\end{array}$在(-∞,+∞)上單調(diào)遞增,則a的取值范圍是(  )
A.(6,12)B.(1,+∞)C.[6,12)D.(1,12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某工廠有甲乙丙丁四類產(chǎn)品共3000件,且所占比例為1:2:3:4,現(xiàn)按照分層抽樣的方式抽取200件,則甲產(chǎn)品抽取( 。┘
A.20B.40C.60D.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)的定義域是(1,2),則函數(shù)f(x+1)的定義域是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)滿足f(x+1)=x2-1,則( 。
A.f(x)=x2-2xB.f(x)=x2+2xC.f(x)=x2-4xD.f(x)=x2+4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若不等式2xlnx≥-x2+ax-3對(duì)x∈(0,+∞)恒成立,則實(shí)數(shù)a的取值范圍是(-∞,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)集合A={1,3},B={a,a2},A∩B={1},則實(shí)數(shù)a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)a>1,b>1且ab-(a+b)=1,那么( 。
A.ab有最大值$2\sqrt{2}+1$B.ab有最小值${(\sqrt{2}+2)^2}$C.ab有最小值${(\sqrt{2}+1)^2}$D.ab有最大值$2(\sqrt{2}+1)$

查看答案和解析>>

同步練習(xí)冊(cè)答案