1.函數(shù)f(x)=log3x+x-5的一個零點(diǎn)所在的區(qū)間為(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

分析 確定函數(shù)的定義域?yàn)椋?,+∞)與單調(diào)性,再利用零點(diǎn)存在定理,即可得到結(jié)論.

解答 解:函數(shù)的定義域?yàn)椋?,+∞),易知函數(shù)在(0,+∞)上單調(diào)遞增,
∵f(4)=log34+4-5>0,f(3)=log33+3-5<0,
∴函數(shù)f(x)=log3x+x-5的零點(diǎn)一定在區(qū)間(3,4),
故選:D.

點(diǎn)評 本題考查函數(shù)的單調(diào)性,考查零點(diǎn)存在定理,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知x>0,y>0且lg(x2+y2-4)≤0,則|2x+y-10|的取值范圍是[5,8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在生產(chǎn)過程中,測得纖維產(chǎn)品的纖度(表示纖維粗細(xì)的一種量)共有100個數(shù)據(jù),將數(shù)據(jù)分組如表:
分組頻數(shù)
[1.30,1.34)4
[1.34,1.38)22
[1.38,1.42)40
[1.42,1.46)22
[1.46,1.50)10
[1.50,1.54)2
合計(jì)100
(1)畫出頻率分布直方圖;
(2)估計(jì)纖度落在[1.38,1.50)中的頻率及纖度小于1.40的頻率是多少?
(3)從頻率分布直方圖估計(jì)出纖度的眾數(shù)、中位數(shù)和平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.[2sin50°+sin10°(1+$\sqrt{3}$tan10°)]•$\sqrt{2si{n}^{2}80°}$的值為$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,點(diǎn)(x,y)在陰影部分所表示的平面區(qū)域上,則z=y-x的最大值為( 。
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若acosB+bcosA=csinC,則△ABC的形狀為(  )
A.銳角三角形B.等腰直角三角形C.鈍角三角形D.直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知命題p:點(diǎn)M(1,3)不在圓(x+m)2+(y-m)2=16的內(nèi)部,
命題q:“曲線${C_1}:\frac{x^2}{m^2}+\frac{y^2}{2m+8}=1$表示焦點(diǎn)在x軸上的橢圓”,
命題s:“曲線${C_2}:\frac{x^2}{m-t}+\frac{y^2}{m-t-1}=1$表示雙曲線”.
(1)若“p且q”是真命題,求m的取值范圍;
(2)若?s是?q的必要不充分條件,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知定義域?yàn)镽的奇函數(shù)y=f(x)的導(dǎo)函數(shù)為y=f′(x),當(dāng)x≠0時,$f′(x)+\frac{f(x)}{x}$>0,若a=f(1),b=-2f(-2),c=(ln$\frac{1}{2}$)f(ln$\frac{1}{2}$),則a,b,c的大小關(guān)系正確的是( 。
A.a<c<bB.b<c<aC.a<b<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知定義在R上的偶函數(shù)f(x),當(dāng)x∈[0,+∞)時,f(x)=ex
(1)當(dāng)x∈(-∞,0)時,求過原點(diǎn)與函數(shù)f(x)圖象相切的直線的方程;
(2)求最大的整數(shù)m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤ex.

查看答案和解析>>

同步練習(xí)冊答案