16.若i(x+yi)=3+4i,x,y∈R,則復(fù)數(shù)x+yi的模是5.

分析 利用復(fù)數(shù)的運(yùn)算法則把i(x+yi)可化為3+4i,利用復(fù)數(shù)相等即可得出x=4,y=-3.再利用模的計(jì)算公式可得|x+yi|的值.

解答 解:∵i(x+yi)=xi-y=3+4i,x,y∈R,
∴x=4,-y=3,即x=4,y=-3.
∴|x+yi|=|4-3i|=$\sqrt{{4}^{2}{+(-3)}^{2}}$=5.
故答案為:5.

點(diǎn)評(píng) 熟練掌握復(fù)數(shù)的運(yùn)算法則和模的計(jì)算公式是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知cosα=$\frac{3}{5}$,α∈(-$\frac{π}{2}$,0),則tanα的值為-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在平面直角坐標(biāo)系xOy中,過點(diǎn)P(-2,0)的直線與圓x2+y2=1相切于點(diǎn)T,與圓(x-a)2+(y-$\sqrt{3}}$)2=3相交于點(diǎn)R,S,且PT=RS,則正數(shù)a的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知數(shù)列{an}是正項(xiàng)等比數(shù)列,則下列數(shù)列不是等比數(shù)列的是( 。
A.$\{\sqrt{a_n}\}$B.$\{\frac{1}{a_n}\}$C.{an2}D.{an+1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在如圖所示的“莖葉圖”表示的數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是(  )
A.23與26B.26與30C.24與30D.32與26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知p:x≤1,q:$\frac{1}{x}$<1,則¬p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)l,m為兩條不同的直線,α,β是兩個(gè)不同的平面,下列命題中正確的是(  )
A.若l?α,m?α,l∥β,m∥β,則α∥β
B.若l?α,m?β,l∥m,則α∥β
C.若l?α,m?α,l∩m=點(diǎn)P,l∥β,m∥β,則α∥β
D.若l∥α,l∥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)復(fù)數(shù)z=m2-2m-3+(m2+3m+2)i,試求實(shí)數(shù)m取何值時(shí),
(1)z是實(shí)數(shù);
(2)z是純虛數(shù);
(3)z對(duì)應(yīng)的點(diǎn)位于復(fù)平面的第二象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若公差不為零的等差數(shù)列{an}中,a4=10且a3,a6,a10成等比數(shù)列.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an}的前10項(xiàng)和S10

查看答案和解析>>

同步練習(xí)冊(cè)答案