【題目】為選拔選手參加“中國(guó)謎語(yǔ)大會(huì)”,某中學(xué)舉行了一次“謎語(yǔ)大賽”活動(dòng),為了了解本次競(jìng)賽學(xué)生的成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本,(樣本容量為)進(jìn)行統(tǒng)計(jì).按照,,,,的分組作出如下頻率分布直方圖.
(1)由如下莖葉圖(圖中僅列出了得分在,的數(shù)據(jù))提供的信息,求樣本容量和頻率分布直方圖中的的值;
(2)在選取的樣本中,從競(jìng)賽成績(jī)?cè)?0分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生參加“中國(guó)謎語(yǔ)大會(huì)”,求所抽取的2名學(xué)生中至少有一人得分在內(nèi)的概率.
【答案】(1);(2).
【解析】
試題分析:(1)從莖葉圖中知這一組的人數(shù)是8,由頻率可得總?cè)萘?/span>,接著由這一組人數(shù)是2,可求得,再由頻率分布直方圖的性質(zhì)可求得;(2)分?jǐn)?shù)在內(nèi)的學(xué)生有5人,分?jǐn)?shù)在內(nèi)的學(xué)生有2人,可把他們編號(hào),然后列舉出從中取2人的所有組合,計(jì)算出總數(shù)及符號(hào)條件的數(shù)目,由古典概率公式可得概率.
試題解析:(1)由題意可知,樣本容量,,
.
(2)由題意可知,分?jǐn)?shù)在內(nèi)的學(xué)生有5人,記這5人分別為,,
分?jǐn)?shù)在內(nèi)的學(xué)生有2人,記這2人分別為.
抽取的2名學(xué)生的所有情況有21種,分別為:
,
,
其中2名同學(xué)的分?jǐn)?shù)都不在內(nèi)的情況有10種,分別為:
,
∴所抽取的2名學(xué)生中至少有一人得分在內(nèi)的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價(jià)定為60元.該廠為鼓勵(lì)銷售商訂購(gòu),決定當(dāng)一次訂購(gòu)量超過(guò)100件時(shí),每多訂購(gòu)一件,訂購(gòu)的全部服裝的出廠單價(jià)就降低0.02元.根據(jù)市場(chǎng)調(diào)查,銷售商一次訂購(gòu)量不會(huì)超過(guò)500件.
(1)設(shè)一次訂購(gòu)量為x件,服裝的實(shí)際出廠單價(jià)為P元,寫出函數(shù)P=f(x)的表達(dá)式;
(2)當(dāng)銷售商一次訂購(gòu)多少件時(shí),該服裝廠獲得的利潤(rùn)最大,最大利潤(rùn)是多少元? (服裝廠售出一件服裝的利潤(rùn)=實(shí)際出廠單價(jià)﹣成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于點(diǎn)F,且點(diǎn)F在CE上.
(1)求證:AE⊥BE;
(2)求三棱錐C﹣ADE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù), +1.
(1)若,曲線y=f(x)與在x=0處有相同的切線,求b;
(2)若,求函數(shù)的單調(diào)遞增區(qū)間;
(3)若對(duì)任意恒成立,求b的取值區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)求函數(shù)的最小正周期和單調(diào)減區(qū)間;
(2)已知的三個(gè)內(nèi)角的對(duì)邊分別為,其中,若銳角滿足,且,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓的離心率為,其左焦點(diǎn)到點(diǎn)的距離為.不過(guò)原點(diǎn)的直線與相交于兩點(diǎn),且線段被直線平分.
(1)求橢圓的方程;
(2)求的面積取最大值時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+bx+c,其對(duì)稱軸為y軸(其中b,c為常數(shù)) (Ⅰ)求實(shí)數(shù)b的值;
(Ⅱ)記函數(shù)g(x)=f(x)﹣2,若函數(shù)g(x)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)c的取值范圍;
(Ⅲ)求證:不等式f(c2+1)>f(c)對(duì)任意c∈R成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>1,f(x)=x2﹣ax , 當(dāng)x∈(﹣1,1)時(shí),均有f(x)< ,則實(shí)數(shù)a的取值范圍是( )
A.(1,2)
B.(1,3]
C.(1, )
D.(1,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉 | [0,10) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) |
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均課外課外體育運(yùn)動(dòng)時(shí)間在[40,60)上的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該校高三學(xué)生中,抽取3名學(xué)生,記被抽取的3名學(xué)生中的“課外體育達(dá)標(biāo)”學(xué)生人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的數(shù)學(xué)期望和方差.
參考公式: ,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com