3.一個年級共有12個班,每個班學(xué)生的學(xué)號從1到50,為交流學(xué)習(xí)經(jīng)驗,要求每班學(xué)號為14的同學(xué)留下,這里運(yùn)用的是( 。
A.分層抽樣法B.抽簽法C.隨機(jī)數(shù)表法D.系統(tǒng)抽樣法

分析 學(xué)生人數(shù)比較多,把每個班級學(xué)生從1到50號編排,要求每班編號為14的同學(xué)留下進(jìn)行交流,這樣選出的樣本是具有相同的間隔的樣本,是采用系統(tǒng)抽樣的方法.

解答 解:當(dāng)總體容量N較大時,采用系統(tǒng)抽樣.將總體分段,分段的間隔要求相等,這時間隔一般為預(yù)先制定的,在第1段內(nèi)采用簡單隨機(jī)抽樣確定一個起始編號,在此編號的基礎(chǔ)上加上分段間隔的整倍數(shù)即為抽樣編號.
本題中,把每個班級學(xué)生從1到50號編排,
要求每班編號為14的同學(xué)留下進(jìn)行交流,
這樣選出的樣本是采用系統(tǒng)抽樣的方法,
故選:D.

點(diǎn)評 本題考查系統(tǒng)抽樣,當(dāng)總體容量N較大時,采用系統(tǒng)抽樣,將總體分成均衡的若干部分即將總體分段,分段的間隔要求相等,系統(tǒng)抽樣又稱等距抽樣.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若α∈(π,2π),且sinα+cosα=$\frac{\sqrt{2}}{4}$.
(1)求cos2α-cos4α的值; 
(2)求sinα-cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四棱錐S-ABCD中,底面ABCD是菱形,∠BAD=60°,側(cè)面SAB⊥底面ABCD,并且SA=SB=AB=2,F(xiàn)為SD的中點(diǎn).
(1)求三棱錐S-FAC的體積;
(2)求直線BD與平面FAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)命題P:?x∈R,x2-2x>a,命題Q:?x0∈R,x02+2ax0+2-a=0,如果“P或Q”為真,“P且Q”為假,a的取值范圍(-2,-1)∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.定義:對于函數(shù)f(x),若存在非零常數(shù)M,T,使函數(shù)f(x)對于定義域內(nèi)的任意實數(shù)x,都有f(x+T)-f(x)=M,則稱函數(shù)f(x)是廣義周期函數(shù),其中稱T為函數(shù)f(x)的廣義周期,M稱為周距.
(1)證明函數(shù)f(x)=x+(-1)x(x∈Z)是以2為廣義周期的廣義周期函數(shù),并求出它的相應(yīng)周距M的值;
(2)設(shè)函數(shù)y=g(x)是周期T=2的周期函數(shù)(即滿足g(x+2)=g(x)),當(dāng)函數(shù)f(x)=-2x+g(x)在[1,3]上的值域為[-3,3]時,求f(x)在[-9,9]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知直線l:y=2x+2,曲線C:y=lnx+x,直線x=a,(a>0)交直線l于點(diǎn)A,交曲線C于點(diǎn)B,則|AB|的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)$y={log_{\frac{1}{3}}}(3+2x-{x^2})$的遞增區(qū)間為( 。
A.[1,+∞)B.(-1,1]C.(-∞,1]D.[1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.極限$\underset{lim}{x→0}$$\frac{1}{2+{3}^{\frac{1}{x}}}$的結(jié)果是( 。
A.0B.$\frac{1}{2}$C.$\frac{1}{5}$D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)斜率為2的直線l過拋物線y2=2px(p>0)的焦點(diǎn)F.且與拋物線交于A,B兩點(diǎn).過A,B兩點(diǎn)分別作拋物線的準(zhǔn)線的垂線,垂足分別為A1,B1,記四邊形ABB1A1的面積為S.則$\overrightarrow{AB}•\overrightarrow{{A}_{1}{B}_{1}}$=$\frac{4\sqrt{5}}{5}$S.

查看答案和解析>>

同步練習(xí)冊答案