20.(1)已知a,b,c>0且a+b+c=1,求證:$\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}≤3\sqrt{2}$;
(2)已知n∈N*,求證:$1+\frac{1}{{\sqrt{2}}}+\frac{1}{{\sqrt{3}}}+…+\frac{1}{{\sqrt{n}}}≤2\sqrt{n}$.

分析 (1)運用構(gòu)造向量法,設(shè)$\overrightarrow{m}$=(1,1,1),$\overrightarrow{n}$=($\sqrt{3a+1}$,$\sqrt{3b+1}$,$\sqrt{3c+1}$),由|$\overrightarrow{m}$•$\overrightarrow{n}$|≤|$\overrightarrow{m}$|•|$\overrightarrow{n}$|,計算即可得證;
(2)運用數(shù)學歸納法證明,注意解題步驟,當n=k+1時,要證的目標是$1+\frac{1}{{\sqrt{2}}}+\frac{1}{{\sqrt{3}}}+…+\frac{1}{{\sqrt{k}}}+\frac{1}{{\sqrt{k+1}}}<2\sqrt{k+1}$,當代入歸納假設(shè)后,就是要證明:$2\sqrt{k}+\frac{1}{{\sqrt{k+1}}}<2\sqrt{k+1}$.

解答 證明:(1)設(shè)$\overrightarrow{m}$=(1,1,1),$\overrightarrow{n}$=($\sqrt{3a+1}$,$\sqrt{3b+1}$,$\sqrt{3c+1}$),
則|$\overrightarrow{m}$|=$\sqrt{3}$,|$\overrightarrow{n}$|=$\sqrt{3(a+b+c)+3}$=$\sqrt{6}$,
由|$\overrightarrow{m}$•$\overrightarrow{n}$|≤|$\overrightarrow{m}$|•|$\overrightarrow{n}$|,
可得$\sqrt{3a+1}$+$\sqrt{3b+1}$+$\sqrt{3c+1}$≤3$\sqrt{2}$;
(2)①當n=1時,左邊=1,右邊=2.
左邊<右邊,不等式成立.
②假設(shè)n=k時,不等式成立,即$1+\frac{1}{{\sqrt{2}}}+\frac{1}{{\sqrt{3}}}+…+\frac{1}{{\sqrt{k}}}<2\sqrt{k}$.
那么當n=k+1時,$1+\frac{1}{{\sqrt{2}}}+\frac{1}{{\sqrt{3}}}+…+\frac{1}{{\sqrt{k}}}+\frac{1}{{\sqrt{k+1}}}$$<2\sqrt{k}+\frac{1}{{\sqrt{k+1}}}=\frac{{2\sqrt{k}\sqrt{k+1}+1}}{{\sqrt{k+1}}}$
$<\frac{{k+({k+1})+1}}{{\sqrt{k+1}}}=\frac{{2({k+1})}}{{\sqrt{k+1}}}=2\sqrt{k+1}$,
這就是說,當n=k+1時,不等式成立.
由①、②可知,原不等式對任意自然數(shù)n都成立.

點評 本題考查不等式的證明,考查構(gòu)造向量法和數(shù)學歸納法的證明,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0.
(Ⅰ)求證:對m∈R,直線l與圓C總有兩個不同交點;
(Ⅱ)設(shè)l與圓C交與不同兩點A、B,求弦AB的中點M的軌跡方程;
(Ⅲ)若定點P(1,1)分弦AB為$\frac{AP}{PB}$=$\frac{1}{2}$,求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.從1,3,5,7這4個數(shù)中一次隨機地取2個數(shù),則所取2個數(shù)的和小于9的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,E為矩形ABCD所在平面外一點,AD⊥平面ABE,AE=EB=BC=2,F(xiàn)為CE上的點,且BF⊥平面ACE,
(Ⅰ)求證:AE⊥平面BCE;
(Ⅱ)G為矩形ABCD對角線的交點,求三棱錐C-BGF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某個服裝店經(jīng)營某種服裝,在某周內(nèi)獲純利潤y(元)與該周每天銷售這種服裝件數(shù)x之間的一組數(shù)據(jù)關(guān)系見下表:
x3456789
y66697381899091
已知:$\sum_{i=1}^{7}$${x}_{i}^{2}$=280,$\sum_{i=1}^{7}$xiyi=3 487.
(1)求$\overline{x}$,$\overline{y}$;
(2)畫出散點圖;
(3)求純利潤y與每天銷售件數(shù)x之間的回歸直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設(shè)一個線性回歸方程y=3-2x,變量x增加一個單位時(  )
A.y平均增加2個單位B.y平均減少3個單位
C.y平均減少2個單位D.y平均增加3個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.中百超市為了回饋廣大顧客多年來對本超市的光顧與厚愛,特定在2015年元旦期間矩形特大優(yōu)惠活動,凡購買商品達到88元以上者,可獲得一次抽獎機會.已知抽獎工具是一個圓面轉(zhuǎn)盤,被分為6個扇形塊,分別記為1,2,3,4,5,6,其面積成公比為3的等比數(shù)列(即扇形塊2的面積是扇形塊1面積的3倍),指針箭頭指在最小的1區(qū)域內(nèi)時,就中“一等獎”,則消費88元以上者抽中一等獎的概率是( 。
A.$\frac{1}{40}$B.$\frac{1}{121}$C.$\frac{1}{364}$D.$\frac{1}{1093}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知不等式$\frac{x+7}{x+3}$≥2的解集為A,關(guān)于x的不等式ax2-(2a+1)x+2>0的解集為B.
(1)若A∪B={x|-3<x<2},求實數(shù)a的取值范圍;
(2)若A⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.下列四個結(jié)論,其中正確的有( 。﹤.
①已知(1-2x)7=a0+a1x+a2x2+…+a7x7,則a1+a2+…+a7=-3;
②過原點作曲線y=ex的切線,則切線方程為ex-y=0(其中e為自然對數(shù)的底數(shù));
③已知隨機變量X~N(3,1),且P(2≤X≤4)=0.6862,則P(X>4)=0.1587
④已知n為正偶數(shù),用數(shù)學歸納法證明等式1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n-1}$=2($\frac{1}{n+2}$+$\frac{1}{n+4}$+…+$\frac{1}{2n}$)時,若假設(shè)n=k(k≥2)時,命題為真,則還需利用歸納假設(shè)再證明n=k+1時等式成立,即可證明等式對一切正偶數(shù)n都成立.
⑤在回歸分析中,常用R2來刻畫回歸效果,在線性回歸模型中,R2表示解釋變量對于預報變量變化的貢獻率,R2越接近1,表示回歸的效果越好.
A.2B.3C.4D.5

查看答案和解析>>

同步練習冊答案