2.△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,且acosB-bcosA=$\frac{1}{2}$c,則tan(A-B)的最大值是$\frac{\sqrt{3}}{3}$.

分析 由已知式子和正弦定理以及三角函數(shù)公式可得tanA=3tanB,且tanA>0.tanB>0,由兩角差的正切公式可得tan(A-B)=$\frac{2}{\frac{1}{tanB}+3tanB}$,由基本不等式可得.

解答 解:∵△ABC中acosB-bcosA=$\frac{1}{2}$c,
∴由正弦定理可得sinAcosB-sinBcosA=$\frac{1}{2}$sinC,
∴2sinAcosB-2sinBcosA=sinC=sin(A+B),
∴2sinAcosB-2sinBcosA=sinAcosB+cosAsinB,
整理可得sinAcosB=3cosAsinB,∴tanA=3tanB,
由三角形內(nèi)角的范圍易得tanA>0.tanB>0,
∴tan(A-B)=$\frac{tanA-tanB}{1+tanAtanB}$=$\frac{2tanB}{1+3ta{n}^{2}B}$
=$\frac{2}{\frac{1}{tanB}+3tanB}$≤$\frac{2}{2\sqrt{\frac{1}{tanB}•3tanB}}$=$\frac{\sqrt{3}}{3}$
當(dāng)且僅當(dāng)$\frac{1}{tanB}$=3tanB即tanB=$\frac{\sqrt{3}}{3}$即B=$\frac{π}{6}$時tan(A-B)取最大值$\frac{\sqrt{3}}{3}$
故答案為:$\frac{\sqrt{3}}{3}$.

點評 本題考查正弦定理,涉及三角函數(shù)公式以及基本不等式求最值,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.從3,5,7,11這四個質(zhì)數(shù)中任取兩個相乘,可以得到多少個不相等的積?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知$\overrightarrow{a}$=(2,1),$\overrightarrow$=(3,m),若$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow$),則|$\overrightarrow{a}$+$\overrightarrow$|等于5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列程序語句正確的是( 。
A.輸出語句PRINT A=4B.輸入語句  INPUT x=3
C.賦值語句 A=A*A+A-3D.賦值語句  55=a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.拋物線y2=mx的焦點為(-1,0),則m=( 。
A.-4B.4C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知約束條件$\left\{{\begin{array}{l}{x+y-3≥0}\\{2x+y-5≥0}\end{array}}\right.$,目標(biāo)函數(shù)z=ax+y有最小值4,則a=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在邊長為8的正方形ABCD內(nèi)任取一點M,則∠AMB>90°的概率為( 。
A.$\frac{π}{8}$B.1-$\frac{π}{8}$C.$\frac{π}{4}$D.1-$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.?dāng)?shù)列1,-4,9,-16,25…的一個通項公式為(  )
A.an=n2B.an=(-1)nn2C.an=(-1)n+1n2D.an=(-1)n(n+1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知z∈C,|z-(1+i)|=1,則|z+2+3i|的最大值為( 。
A.6B.5C.4D.3

查看答案和解析>>

同步練習(xí)冊答案