分析 (1)求出f(x+α),代入g(x)=f(x)•f(x+α)化簡得出.
(2)對g(x)化簡得$g(x)=2cosx(cosx+\sqrt{3}sinx)$=4cosx•cos(x-$\frac{π}{3}$),故f(x)=2cosx,α=-$\frac{π}{3}$.
(3)求出g(x)的解析式,判斷g(x)在何時取的最大值和最小值,
解答 解:(1)∵f(x)=cosx+sinx,$α=\frac{π}{2}$∴f(x+α)=cos(x+$\frac{π}{2}$)+sin(x+$\frac{π}{2}$)=cosx-sinx;
∴g(x)=(cosx+sinx)(cosx-sinx)=cos2x-sin2x=cos2x.
(2)∵$g(x)=2cosx(cosx+\sqrt{3}sinx)$=4cosx•cos(x-$\frac{π}{3}$),
∴f(x)=2cosx,α=-$\frac{π}{3}$.
(3)∵f(x)=|sinx|+cosx,∴g(x)=f(x)•f(x+α)=(|sinx|+cosx)(|cosx|-sinx)
=$\left\{\begin{array}{l}{cos2x,x∈(2kπ,2kπ+\frac{π}{2}]}\\{-sin2x-1,x∈(2kπ+\frac{π}{2},2kπ+π]}\\{-cos2x,x∈(2kπ+π,2kπ+\frac{3π}{2}]}\\{1-2sin2x,x∈(2kπ+\frac{3π}{2},2kπ+2π]}\end{array}\right.$,
因為存在x1,x2∈R,對任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,
所以當(dāng)x1=2kπ+π或${x_1}=2kπ+\frac{π}{2},k∈Z$時,g(x)≥g(x1)=-1
當(dāng)${x_2}=2kπ+\frac{7π}{4},k∈Z$時,g(x)≤g(x2)=2
所以$|{{x_1}-{x_2}}|=|{2{k_1}π+π-(2{k_2}π+\frac{7π}{4})}|\;,{k_1}、{k_2}∈Z$
或$|{{x_1}-{x_2}}|=|{2{k_1}π+\frac{π}{2}-(2{k_2}π+\frac{7π}{4})}|\;,{k_1}、{k_2}∈Z$
所以|x1-x2|的最小值是$\frac{3π}{4}$.
點評 本題考查了三角函數(shù)的恒等變換,三角函數(shù)的性質(zhì),分段函數(shù)的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $arctan\frac{3}{4}$ | B. | $π-arctan\frac{3}{4}$ | C. | $arctan\frac{4}{3}$ | D. | $π-arctan\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{3,\;\;\sqrt{10}}]$ | B. | [3,5] | C. | [3,4] | D. | $[{\sqrt{10},\;\;5}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com