函數(shù)f(x)=
sinx
x
,x∈[0,π)的單調(diào)區(qū)間為
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出函數(shù)的導(dǎo)數(shù),通過(guò)導(dǎo)數(shù)的符號(hào),然后求解函數(shù)的單調(diào)區(qū)間.
解答: 解:函數(shù)f(x)=
sinx
x
,
可得函數(shù)f′(x)=
xcosx-sinx
x2
,
當(dāng)x∈(0,
π
2
)時(shí),xcosx-sinx>0,即x>tanx,由三角函數(shù)線可知,不等式不成立,
可得x∈(0,
π
2
)時(shí),f′(x)<0,函數(shù)是減函數(shù).
當(dāng)x∈(
π
2
,π)時(shí),xcosx-sinx<0,函數(shù)是減函數(shù).函數(shù)在x=
π
2
時(shí)連續(xù),
所以函數(shù)f(x)=
sinx
x
,x∈[0,π)的單調(diào)區(qū)間為(0,π).
故答案為:(0,π).
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性的判斷與應(yīng)用,函數(shù)的導(dǎo)數(shù)的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=sin
π
3
,b=cos
π
3
,c=
π
3
,d=tan
π
4
,則下列關(guān)系中正確的( 。
A、c>d>a>b
B、d>c>a>b
C、c>d>b>a
D、以上答案均不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一點(diǎn)A和平面a,求證:經(jīng)過(guò)點(diǎn)A只能有一條直線和平面a垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,頂點(diǎn)B(-1,0),C(1,0),G,I分別是△ABC的重心和內(nèi)心,且
IG
BC

(1)求頂點(diǎn)A的軌跡M的方程;
(2)過(guò)點(diǎn)C的直線交曲線M于P,Q兩點(diǎn),H是直線x=4上一點(diǎn),設(shè)直線CH,PH,QH的斜率為k1,k2,k3,試比較2k1與k2+k3的大小,并加以說(shuō)明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

動(dòng)點(diǎn)M(t,0),t∈[2,4]到雙曲線x2-y2=a2,a>0上所有點(diǎn)的距離的最小值恒在右頂點(diǎn)處達(dá)到,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(2cosx,sinx),
n
=(cosx,2
3
cosx)
(x∈R),設(shè)函數(shù)f(x)=
m
n
-1.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2已知銳角△ABC的三個(gè)內(nèi)角分別為A,B,C,若f(A)=2,B=
π
4
,邊AB=3,求邊BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=1,|
b
|=2,<
a
b
>=60°,則|
a
-2
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x)=a+
2
2x+1
x∈R是奇函數(shù).
(1)求a值;
(2)用定義證明:f(x)在R上是單調(diào)減函數(shù);
(3)解不等式f(2t+1)+f(t-5)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若O為坐標(biāo)原點(diǎn),點(diǎn)A在第三象限,且|OA|=4,∠xOA=210°,則
OA
坐標(biāo)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案