7.如圖,E、F、G、H分別是空間四邊形ABCD四邊上的中點(diǎn).
(1)若BD=2,AC=6,則EG2+HF2等于多少?
(2)若AC與BD成30°的角,且AC=6,BD=4,則四邊形EFGH的面積等于多少?

分析 (1)由題意得出四邊形EFGH是平行四邊形,求出它的各邊長,再利用余弦定理求出EG2與HF2的表達(dá)式,即可得出EG2+HF2的值;
(2)根據(jù)平行線成角定理,再結(jié)合中位線定理,求出四邊形EFGH的面積.

解答 解:(1)∵E、F、G、H分別是空間四邊形ABCD四邊上的中點(diǎn),
∴EH∥BD,且EH=$\frac{1}{2}$BD;
FG∥BD,且FG=$\frac{1}{2}$BD;
∴EH∥FG,且EH=FG,
∴四邊形EFGH是平行四邊形;
又BD=2,AC=6,
∴EH=$\frac{1}{2}$BD=1,EF=$\frac{1}{2}$AC=3,

在△EFG和△HFG中,由余弦定理得,
EG2=EF2+FG2-2EF•FG•cos∠EFG
=32+12-2×3×1×cos∠EFG
=10-6cos∠EFG,
HF2=HG2+FG2-2HG•FG•cos∠FGH
=32+12-2×3×1×cos(π-∠EFG)
=10+6cos∠EFG,
∴EG2+HF2=20;
(2)∵AC與BD成30°的角,且EF∥AC,F(xiàn)G∥BD,
∴∠EFG=30°,
又AC=6,BD=4,
∴EF=$\frac{1}{2}$AC=3,F(xiàn)G=$\frac{1}{2}$BD=2;
∴四邊形EFGH的面積為S=EF•FG•sin∠EFG=3×2×sin30°=3.

點(diǎn)評 本題考查了空間中的平行關(guān)系的應(yīng)用問題,也考查了正弦和余弦定理的應(yīng)用問題,是綜合性題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)A、B、C、D分別表示下列角的取值范圍:
(1)A是直線傾斜角的取值范圍;
(2)a是銳角;
(3)c是直線與平面所成角的取值范圍;
(4)D是兩異面直線所成角的取值范圍,
用“⊆”把集合A、B、C、D連接起來得到B⊆D⊆C⊆A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.使奇函數(shù)f(x)=sin(2x+α)在[-$\frac{π}{4}$,0]上為減函數(shù)的α的值可以是( 。
A.0B.$\frac{π}{2}$C.πD.$\frac{3}{2}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知Sn是等比數(shù)列{an}的前n項和,a1=30,8S6=9S3,設(shè)Tn=a1a2a3…an,則使Tn取得最大值的n為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.曲線 ρ=8sinθ和 ρ=-8cosθ?(ρ>0)的交點(diǎn)的極坐標(biāo)是(4$\sqrt{2}$,$\frac{3π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知曲線C的極坐標(biāo)方程是ρ=4cosθ,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,設(shè)直線L的參數(shù)方程為$\left\{\begin{array}{l}x=5+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$(t為參數(shù))
(1)求曲線C的直角坐標(biāo)方程與直線L的普通方程
(2)設(shè)曲線C與直線L相交于P,Q兩點(diǎn),求|PQ|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,兩個正方形ABCD和ADEF所在平面互相垂直,設(shè)M、分別是BD和AE的中點(diǎn),
①AD⊥MN;      ②MN∥面CDE;
③MN∥CE;      ④MN、CE異面.
其中正確結(jié)論的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在等比數(shù)列{an}中,a1=-3,a2=-6,則a4的值為(  )
A.-24B.24C.±24D.-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在△ABC中,AO⊥BC于O,OB=2OA=2OC=4,點(diǎn)D,E,F(xiàn)分別為OA,OB,OC的中點(diǎn),BD與AE相交于H,CD與AF相交于G,將△ABO沿OA折起,使二面角B-OA-C為直二面角.
(Ⅰ)在底面△BOC的邊BC上是否存在一點(diǎn)P,使得OP⊥GH,若存在,請計算BP的長度;若不存在,請說明理由;
(Ⅱ)求二面角A-GH-D的余弦值.

查看答案和解析>>

同步練習(xí)冊答案