分析 由$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=5,得到{$\frac{1}{{a}_{n}}$}是以5為公差的等差數(shù)列,即可得到$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{1}}$+5(n-1),代值計算即可.
解答 解:$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=5,
∴{$\frac{1}{{a}_{n}}$}是以5為公差的等差數(shù)列,
∴$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{1}}$+5(n-1),
∵a11=$\frac{1}{52}$,
∴$\frac{1}{{a}_{11}}$=$\frac{1}{{a}_{1}}$+5(11-1)=52,即$\frac{1}{{a}_{1}}$=2,
∴a1=$\frac{1}{2}$
故答案為:$\frac{1}{2}$
點評 本題考查了等差數(shù)列的通項公式,以及首項的求法,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 奇函數(shù) | B. | 偶函數(shù) | ||
C. | 定義域內(nèi)的減函數(shù) | D. | 定義域內(nèi)的增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x2-12y+y2+12y+36=0 | B. | x2+6x+y2-12y+36=0 | ||
C. | x2+12x+y2-12y+36=0 | D. | x2-6x+y2+6y+18=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | ||||
C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com