A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
分析 由雙曲線方程求出一條漸近線l的方程化為一般式,根據(jù)條件和弦長公式列出方程,化簡后求出a的值,再求出該雙曲線的實(shí)軸長.
解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1的一條漸近線l的方程是y=$\frac{a}x$,
即bx-ay=0,
因?yàn)閳A(x-c)2+y2=c2截直線l所得弦長為2$\sqrt{2}$,
所以c2=${(\sqrt{2})}^{2}$+${(\frac{|bc-a×0|}{\sqrt{^{2}+{a}^{2}}})}^{2}$,
化簡得,c2=b2+2,則a=$\sqrt{2}$,
所以該雙曲線的實(shí)軸長為2a=2$\sqrt{2}$,
故選:C.
點(diǎn)評 本題考查雙曲線的簡單幾何性質(zhì),以及直線與圓相交時(shí)弦長問題,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 焦點(diǎn)在x軸上的橢圓 | B. | 焦點(diǎn)在y軸上的橢圓 | ||
C. | 焦點(diǎn)在x軸上的雙曲線 | D. | 焦點(diǎn)在y軸上的雙曲線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{a}$=(1,2,-2),$\overrightarrow$=(-2,-4,4) | B. | $\overrightarrow{c}$=(1,0,0),$\overrightarrowlrflt7v$=(-3,0,0) | ||
C. | $\overrightarrow{e}$=(2,3,0),$\overrightarrow{f}$=(0,0,0) | D. | $\overrightarrow{g}$=(-2,3,5)$\overrightarrow{h}$=(16,-24,40) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com