16.已知數(shù)列{an},a1=1.以后各項由an=an-1+$\frac{1}{n(n-1)}$(n≥2)給出.
(1)寫出數(shù)列{an}的前5項;
(2)求數(shù)列{an}的通項公式.

分析 (1)由a1=1及遞推公式an=an-1+$\frac{1}{n(n-1)}$寫出前5項即可;
(2)由an=an-1+$\frac{1}{n(n-1)}$可得an-an-1=$\frac{1}{n(n-1)}$=$\frac{1}{n-1}$-$\frac{1}{n}$,從而解得.

解答 解:(1)a1=1,
a2=a1+$\frac{1}{2}$=$\frac{3}{2}$,
a3=a2+$\frac{1}{6}$=$\frac{5}{3}$,
a4=a3+$\frac{1}{12}$=$\frac{7}{4}$,
a5=a4+$\frac{1}{20}$=$\frac{9}{5}$;
(2)∵an=an-1+$\frac{1}{n(n-1)}$,
∴a2-a1=1-$\frac{1}{2}$,
a3-a2=$\frac{1}{2}$-$\frac{1}{3}$,
a4-a3=$\frac{1}{3}$-$\frac{1}{4}$,
…,
an-an-1=$\frac{1}{n(n-1)}$=$\frac{1}{n-1}$-$\frac{1}{n}$,
故an-a1=1-$\frac{1}{2}$+($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n-1}$-$\frac{1}{n}$)
=1-$\frac{1}{n}$,
故an=2-$\frac{1}{n}$=$\frac{2n-1}{n}$.

點評 本題考查了數(shù)列的遞推公式的應用及裂項求和法的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.若二次函數(shù)f(x)=x2+mx+3+2m
(1)若函數(shù)f(x)有兩個零點,其中一個零點小于0,另一零點大于5,求m的取值范圍;
(2)f(x)在區(qū)間[1,7]上有最大值22,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在數(shù)列{an}中,若a1=-2,an+1=an+n•2n,則an=(  )
A.(n-2)•2nB.1-$\frac{1}{{2}^{n}}$C.$\frac{2}{3}$(1-$\frac{1}{{4}^{n}}$)D.$\frac{2}{3}$(1-$\frac{1}{{2}^{n}}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1的右焦點為F(c,0),一條漸近線為l,圓(x-c)2+y2=c2截直線l所得弦長為2$\sqrt{2}$,則該雙曲線的實軸長為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設 $\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$ 是任意的非零向量,且相互不共線,有下列命題:①($\overrightarrow{a}$•$\overrightarrow$)$\overrightarrow{c}$-($\overrightarrow{c}$•$\overrightarrow{a}$)$\overrightarrow$=0②|$\overrightarrow{a}$|-|$\overrightarrow$|<|$\overrightarrow{a}$-$\overrightarrow$|③($\overrightarrow$•$\overrightarrow{a}$)$\overrightarrow{c}$-($\overrightarrow{c}$•$\overrightarrow{a}$)$\overrightarrow$與$\overrightarrow{c}$共線 ④(3$\overrightarrow{a}$+2$\overrightarrow$)•(3$\overrightarrow{a}$-2$\overrightarrow$)=9|$\overrightarrow{a}$|2-4|$\overrightarrow$|2其中正確的是②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(2x+2)=x2+4x-5,試求出f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知離心率為$\frac{1}{2}$的橢圓C的中心在原點O,過橢圓C右焦點且垂直于x軸的直線與橢圓C相交于A,B兩點,|AB|=3.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)已知直線l:y=kx+m與橢圓C相交于P,Q兩點,且|$\overrightarrow{OP}$+3$\overrightarrow{OQ}$|=|$\overrightarrow{OP}$-3$\overrightarrow{OQ}$|,橢圓C上一點M滿足:$\overrightarrow{OP}$+$\overrightarrow{OQ}$=λ$\overrightarrow{OM}$,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若$\frac{cosx}{1+sinx}$=$\frac{1}{2}$,求$\frac{sinx-1}{cosx}$=(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知偶函數(shù)f(x)在(-∞,0]上單調遞減,f(-1)=0,若f(log2x)<0,則x的取值范圍是(  )
A.($\frac{1}{2}$,2)B.(-∞,$\frac{1}{2}$)∪(2,+∞)C.($\frac{1}{2}$,1)∪(2,+∞)D.(0,2)

查看答案和解析>>

同步練習冊答案