14.若角α的終邊過(guò)點(diǎn)(1,-2),則cos(α+$\frac{π}{2}$)=$\frac{2\sqrt{5}}{5}$.

分析 由條件利用任意角的三角函數(shù)的定義、誘導(dǎo)公式,求得cos(α+$\frac{π}{2}$)的值.

解答 解:角α的終邊過(guò)點(diǎn)(1,-2),則cos(α+$\frac{π}{2}$)=-sinα=-$\frac{-2}{\sqrt{5}}$=$\frac{2\sqrt{5}}{5}$,
故答案為:$\frac{2\sqrt{5}}{5}$.

點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義,誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若實(shí)數(shù)a≥0,b≥1且$\frac{{{4^a}+{4^b}}}{{{2^{a+1}}+{2^{b+2}}-1}}=1$,則2a+2b+1的取值范圍為[7,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.求值:$\frac{{cos{{40}°}+sin{{50}°}(1+\sqrt{3}tan{{10}°})}}{{sin{{70}°}\sqrt{1+cos{{40}°}}}}$=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=sin(ωx+φ)(ω>0),若f(x)的圖象向左平移$\frac{π}{3}$個(gè)單位所得的圖象與f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位所得的圖象重合,則ω的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{(x+1)^{2},x<1}\\{4-\sqrt{x-1},x≥1}\end{array}\right.$,求使得f(a)=1的自變量a的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)$f(x)=\sqrt{1-x}+1$的值域是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知圓C:x2+y2-2ax-2(a-1)y-1+2a=0(a≠1)對(duì)所有的a∈R且a≠1總存在直線l與圓C相切,則直線l的方程為y=-x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,已知直線PM∥QN,PM,QN分別與平面α交于M,N,直線PQ交平面α于A點(diǎn).求證:M,N,A三點(diǎn)在同一條直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=ax(a>0,且a≠1)在[-1,1]上的函數(shù)值總小于2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案