5.已知條件p:x≤1,條件q:$\frac{1}{x}$<1,則¬q是p的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既非充分也不必要條件

分析 根據(jù)充分條件和必要條件的定義,結(jié)合不等式的關(guān)系進(jìn)行判斷.

解答 解:由$\frac{1}{x}$<1得x>1或x<0,即q:x>1或x<0,則¬q:0≤x≤1,
則¬q是p的充分不必要條件,
故選:A

點評 本題主要考查充分條件和必要條件的判斷,利用不等式的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知關(guān)于x的方程x2+ax+2b+1=0的兩個實根分別為x1、x2,且-1<x1<1<x2<2,則$\frac{b-1}{a-1}$的取值范圍是($\frac{1}{8}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在?ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,$\overrightarrow{CE}$=$\frac{1}{3}$$\overrightarrow{CB}$,$\overrightarrow{CF}$=$\frac{2}{3}$$\overrightarrow{CD}$.
(1)用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{EF}$;
(2)若|$\overrightarrow{a}$|=1,|$\overrightarrow$|=4,∠DAB=60°,分別求|$\overrightarrow{EF}$|和$\overrightarrow{AC}$•$\overrightarrow{FE}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.點P(x,y)滿足平面區(qū)域:$\left\{\begin{array}{l}{cosθ≤x≤3cosθ}\\{sinθ≤y≤3sinθ}\end{array}\right.$(θ∈R),點M(x,y)滿足:(x+5)2+(y+5)2=1,則|$\overrightarrow{PM}$|的最小值是( 。
A.5$\sqrt{2}$B.4$\sqrt{2}$-1C.6$\sqrt{2}$-1D.$\sqrt{61}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=4x+k•2-x,且f(1)=2.
(1)求k的值;
(2)若f(x)>22-x,求x的取值范圍;
(3)若f(x)>t•2x對任意的x∈(0,+∞)都成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在△ABC中,sinA:sinB:sinC=3:4:$\sqrt{37}$,則三角形的最大角為120度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知圓(x+1)2+y2=16的圓心為B及點A(1,0),點C為圓上任意一點,求線段AC的垂直平分線l與線段CB的交點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知直線(m+2)x+2y-3=0與直線5x+(m-1)y+6=0互相平行,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知數(shù)列{an}的前n項和為Sn,且an≠0,則“Sn+1=3an+1+2Sn”是“數(shù)列{an}為等比數(shù)列”的( 。
A.充要條件B.充要不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案