6.設函數(shù)f(x)是定義在R上的以3為周期的函數(shù),若f(2)=2,則f(-4)=2.

分析 根據(jù)周期性性質,可求得f(-4)=f(2)=2.

解答 解:由f(x)以3為周期的函數(shù)的性質f(x+T)=f(x),
∴f(-4)=f(-4+3×2)=f(2)=2,
故答案為:2.

點評 本題考查了函數(shù)的性質,運奇函數(shù)的定義,周期性求解函數(shù)值,難度很小,屬于容易題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.在極坐標系中,曲線ρ=sinθ+2與ρsinθ=2的公共點到極點的距離為1+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在△ABC中,角A,B,C的對邊分別為a,b,c,A=$\frac{π}{4},cosB=\frac{4}{5}$.
(Ⅰ)求cosC的值;
(Ⅱ)若a=2$\sqrt{2},b=\sqrt{5}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某高校一專業(yè)在一次自主招生中,對20名已經(jīng)選拔入圍的學生進行語言表達能力和邏輯思維能力測試,結果如表:
語言表達能力
人數(shù)
邏輯思維能力
一般良好優(yōu)秀
一般221
良好4m1
優(yōu)秀13n
由于部分數(shù)據(jù)丟失,只知道從這20名參加測試的學生中隨機抽取一人,抽到語言表達能力優(yōu)秀或邏輯思維能力優(yōu)秀的學生的概率為$\frac{2}{5}$.
(1)從參加測試的語言表達能力良好的學生中任意抽取2名,求其中至少有一名邏輯思維能力優(yōu)秀的學生的概率;
(2)從參加測試的20名學生中任意抽取2名,設語言表達能力優(yōu)秀或邏輯思維能力優(yōu)秀的學生人數(shù)為X,求隨機變量X的分布列及其均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在△ABC中,AB=$\sqrt{3}$,AC=1,∠B=30°,△ABC的面積為$\frac{{\sqrt{3}}}{4}$,則∠C=( 。
A.30°B.120°C.60°D.45°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知(3+x)5=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,則a3+a4等于50.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知U=R,函數(shù)y=log2(2-x)的定義域為M,N={x|x2-2x<0},則下列結論正確的是( 。
A.M∩(∁UN)=∅B.M∩N=NC.M∪N=UD.M⊆(∁UN)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列命題:①已知A、B、C是三角形ABC的內(nèi)角,則A=B是sinA=sinB的充要條件;②設$\overrightarrow a$,$\overrightarrow b$為向量,如果|$\overrightarrow a$+$\overrightarrow b$|=|$\overrightarrow a$-$\overrightarrow b$|,則$\overrightarrow a⊥\overrightarrow b$;③設$\overrightarrow{a}$,$\overrightarrow$為向量,則“$|\overrightarrow a•\overrightarrow b|=|\overrightarrow a||\overrightarrow b|$”是“$\overrightarrow a$∥$\overrightarrow b$”的充分不必要條件;④設$\overrightarrow{a}$,$\overrightarrow$為向量,“$\overrightarrow{a}$=2$\overrightarrow$”是“$\overrightarrow{a}$與$\overrightarrow b$共線”的充要條件,正確的是(  )
A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知不等式ax2+bx+c>0的解集為$\left\{{x|-\frac{1}{3}<x<2}\right\}$,則不等式cx2+bx+a<0的解集為(  )
A.$\left\{{x|-3<x<\frac{1}{2}}\right\}$B.$\left\{{x|x<-3或x>\frac{1}{2}}\right\}$C.$\left\{{x|-2<x<\frac{1}{3}}\right\}$D.$\left\{{x|x<-2或x>\frac{1}{3}}\right\}$

查看答案和解析>>

同步練習冊答案