分析 以BC,BB1,BA為x,y,z軸建立空間坐標(biāo)系,確定相關(guān)的點(diǎn)的坐標(biāo),求出平面ACC1的法向量$\overrightarrow{n}$=(x1,y1,z1),根據(jù)B1M與平面ACC1所成角為30°,得出$\overrightarrow{{B}_{1}M}$與$\overrightarrow{n}$成角為60°,
根據(jù)向量的數(shù)量積得出點(diǎn)的位置.
解答 解:以BC,BB1,BA為x,y,z軸建立空間坐標(biāo)系,
∵AB=BC=1,∠ABC=90°,AA1=2,
∴B(0,0,0),A(0,0,1),C(1,0,0),B1(0,2,0),M(0,y,1),C1(1,2,0)
∴$\overrightarrow{{B}_{1}M}$=(0,y-2,1),$\overrightarrow{AC}$=(1,0,-1),$\overrightarrow{C{C}_{1}}$=(0,2,0),
∵平面ACC1的法向量$\overrightarrow{n}$=(x1,y1,z1),
∴$\left\{\begin{array}{l}{{x}_{1}-{z}_{1}=0}\\{2{y}_{1}=0}\end{array}\right.$
令x1=1,y1=0,z1=1,
∴$\overrightarrow{n}$=(1.0,1),
∵B1M與平面ACC1所成角為30°
∴$\overrightarrow{{B}_{1}M}$與$\overrightarrow{n}$成角為60°,
∴根據(jù)向量的數(shù)量積得出:1=$\sqrt{2}×\frac{1}{2}×\sqrt{(y-2)^{2}+1}$,0≤y≤2
解得:y=3(舍去),y=1,
∴M(0,1,1)
故M是AA1的中點(diǎn).
點(diǎn)評(píng) 本題考查了空間直線平面垂直,所成的角的問題,建立坐標(biāo)系,運(yùn)用向量的數(shù)量積求解,計(jì)算要仔細(xì)認(rèn)真,題目不難,容易出錯(cuò).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=2x-2 | B. | y=-2x+2 | C. | y=x-1 | D. | y=-x+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2f(lnx1)<x1f(lnx2) | B. | x2f(lnx1)>x2f(lnx2) | C. | x1f(lnx1)>x2f(lnx2) | D. | x1f(lnx1)<x2f(lnx2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com