15.已知{an}是公比不等于1的等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,且a3=3,S3=9
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)${b_n}={log_2}\frac{3}{{{a_{2n+3}}}}$,若${c_n}=\frac{4}{{{b_n}{b_{n+1}}}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

分析 (I)利用等比數(shù)列的通項(xiàng)公式與求和公式即可得出.
(II)化簡利用“裂項(xiàng)求和”方法即可得出.

解答 解:(Ⅰ)設(shè)數(shù)列{an}的公比為q,q≠1,$\left\{\begin{array}{l}{a_1}{q^2}=3\\ \frac{{{a_1}(1-{q^3})}}{1-q}=9\end{array}\right.$
化為$\left\{\begin{array}{l}{a_1}{q^2}=3\\{a_1}(1+q+{q^2})=9\end{array}\right.$,------------------------------------------------(3分)
解得${a_1}=12,q=-\frac{1}{2}$,
∴${a_n}=12×{(-\frac{1}{2})^{n-1}}$-------------------------------------------(5分)
(Ⅱ)${a_{2n+3}}=12×{(-\frac{1}{2})^{2n+2}}=3×{(\frac{1}{2})^{2n}}$,${b_n}={log_2}\frac{3}{{{a_{2n+3}}}}={log_2}{2^{2n}}=2n$------(8分)
${c_n}=\frac{4}{{{b_n}{b_{n+1}}}}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$-------------------------------------------------------(10分)${c_1}+{c_2}+{c_3}+…+{c_n}=(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+…+(\frac{1}{n}-\frac{1}{n+1})=1-\frac{1}{n+1}=\frac{n}{n+1}$-----(12分)

點(diǎn)評 本題考查了等比數(shù)列的通項(xiàng)公式與求和公式、“裂項(xiàng)求和”方法、對數(shù)函數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),以線段F1F2為直徑的圓與雙曲線在第二象限的交點(diǎn)為P,若直線PF2與圓E:(x-$\frac{c}{2}$)2+y2=$\frac{^{2}}{16}$相切,則雙曲線的漸近線方程是( 。
A.y=±xB.y=±2xC.y=±$\sqrt{3}$xD.y=±$\sqrt{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知命題p:函數(shù)f(x)=x2-2ax+3在區(qū)間[-1,2]單調(diào)遞增,命題q:函數(shù)g(x)=lg(x2+ax+4)定義域?yàn)镽,若命題“p且q”為假,“p或q”為真,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{5\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個焦點(diǎn)為F1,F(xiàn)2,離心率為$\frac{\sqrt{6}}{3}$,點(diǎn)A,B在橢圓上,F(xiàn)1在線段AB上,且△ABF2的周長等于4$\sqrt{3}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過圓O:x2+y2=4上任意一點(diǎn)P作橢圓C的兩條切線PM和PN與圓O交于點(diǎn)M,N,求△PMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.復(fù)數(shù)z=(1+2i)2,其中i為虛數(shù)單位,則z的實(shí)部為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知兩曲線f(x)=2sinx,g(x)=acosx,$x∈(0\;,\;\;\frac{π}{2})$相交于點(diǎn)P.若兩曲線在點(diǎn)P處的切線互相垂直,則實(shí)數(shù)a的值為$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.文淵閣本四庫全書《張丘建算經(jīng)》卷上(二十三):今有女子不善織,日減功,遲.初日織五尺,末日織一尺,今三十日織訖.問織幾何?意思是:有一女子不善織布,逐日所織布按等差數(shù)列遞減,已知第一天織5尺,最后一天織1尺,共織了30天.問共織布90尺.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)是定義在R上的單調(diào)函數(shù),且對任意的x,y∈R都有f(x+y)=f(x)+f(y),若動點(diǎn)P(x,y)滿足等式f(x2+2x+2)+f(y2+8y+3)=0,則x+y的最大值為( 。
A.2$\sqrt{6}$-5B.-5C.2$\sqrt{6}$+5D.5

查看答案和解析>>

同步練習(xí)冊答案