分析 (1)分析使不等式$\sqrt{11-2\sqrt{30}}>\sqrt{15-4\sqrt{14}}$成立的充分條件,一直分析到使不等式成立的充分條件顯然具備,從而不等式得證.
(2)從不等式的左邊入手,左邊對(duì)應(yīng)的代數(shù)式的二倍,分別寫(xiě)成兩兩相加的形式,在三組相加的式子中分別用均值不等式,整理成最簡(jiǎn)形式,得到右邊的2倍,兩邊同時(shí)除以2,得到結(jié)果.
解答 證明:(1)要證明$\sqrt{11-2\sqrt{30}}>\sqrt{15-4\sqrt{14}}$,
只要證$\sqrt{6}$-$\sqrt{5}$>2$\sqrt{2}$-$\sqrt{7}$即可.
只要證$\sqrt{6}$+$\sqrt{7}$>2$\sqrt{2}$+$\sqrt{5}$,
即證2$\sqrt{42}$>4$\sqrt{10}$,
即證42>40.顯然成立,故要證的不等式成立.
(2)a2+b2+c2=$\frac{1}{2}$(a2+b2+c2+a2+b2+c2)$≥\frac{1}{2}$(2ab+2ca+2bc)=ab+bc+ca.
∴a2+b2+c2≥ab+bc+ca.
點(diǎn)評(píng) 本題主要考查利用分析法證明不等式,考查均值不等式的應(yīng)用,考查不等式的證明方法.利用用分析法證明不等式的關(guān)鍵是尋找使不等式成立的充分條件,直到使不等式成立的充分條件已經(jīng)顯然具備為止,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (3,5) | B. | [3,5) | C. | (1,3) | D. | (1,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,$\frac{1}{2}$) | B. | ($\frac{1}{2}$,1) | C. | (1,2) | D. | (2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com