13.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若a3+a4=18-a6-a5,則S8=36.

分析 利用等差數(shù)列的性質(zhì)可得:a3+a6=a4+a5=a1+a8.再利用前n項(xiàng)和公式即可得出.

解答 解:∵等差數(shù)列{an}的前n項(xiàng)和為Sn,a3+a4=18-a6-a5
∴a3+a4+a6+a5=18,a3+a6=a4+a5=a1+a8
∴2(a1+a8)=18,即a1+a8=9.
則S8=$\frac{8({a}_{1}+{a}_{8})}{2}$=36.
故答案為:36.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.二項(xiàng)式(1-x)6的展開式中x2的系數(shù)是( 。
A.-20B.-15C.15D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}為公差不為零的等差數(shù)列,S6=60,且滿足$a_6^2={a_1}•{a_{21}}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足${b_{n+1}}-{b_n}={a_n}(n∈{N^*})$,且b1=3,求數(shù)列$\{\frac{1}{b_n}\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}滿足a1=2,an>0,且$\frac{{{a}_{n+1}}^{2}}{4}$-$\frac{{{a}_{n}}^{2}}{4}$=1.(n∈N+)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知z=2+i,(i是虛數(shù)單位),z的共軛復(fù)數(shù)是$\overline z$,則$|(3-2z)•\overline z|$=(  )
A.5B.25C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知z=2+i,(i是虛數(shù)單位),z的共軛復(fù)數(shù)是$\overline z$,則復(fù)數(shù)$\frac{\overline z}{i}$=(  )
A.-1-2iB.1-2iC.-1+2iD.1+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=2an-2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ) 若bn=anlog2an,Sn=b1+b2+…+bn,求${S_n}-n•{2^{n+1}}+50<0$成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知F1,F(xiàn)2是離心率為$\frac{1}{2}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),橢圓C與拋物線y2=4x在第一象限的交點(diǎn)為P,F(xiàn)是拋物線的焦點(diǎn),|PF|=$\frac{5}{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點(diǎn)F1的直線l與橢圓C相交于M,N兩點(diǎn),求$\overrightarrow{{F}_{2}M}$$•\overrightarrow{{F}_{2}N}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=lg(x2-4)+$\sqrt{{x}^{2}+6x}$的定義域是( 。
A.(-∞,-2)∪[0,+∞)B.(-∞,-6]∪(2,+∞)C.(-∞,-2]∪[0,+∞)D.(-∞,-6)∪[2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案