20.已知$sinx≥\frac{{\sqrt{3}}}{2}$,則實(shí)數(shù)x的取值集合為{x|2kπ+$\frac{π}{3}$≤x≤2kπ+$\frac{2π}{3}$,k∈Z}.

分析 可得正弦函數(shù)在一個(gè)周期上滿(mǎn)足題意的x范圍,由周期性可得.

解答 解:結(jié)合正弦函數(shù)的圖象可得在[0,2π]上,
滿(mǎn)足$sinx≥\frac{{\sqrt{3}}}{2}$的x滿(mǎn)足$\frac{π}{3}$≤x≤$\frac{2π}{3}$,
由周期性可得{x|2kπ+$\frac{π}{3}$≤x≤2kπ+$\frac{2π}{3}$,k∈Z}
故答案為:{x|2kπ+$\frac{π}{3}$≤x≤2kπ+$\frac{2π}{3}$,k∈Z}

點(diǎn)評(píng) 本題考查正弦函數(shù)的圖象,涉及三角函數(shù)的周期性,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.?dāng)?shù)列{$\frac{2n}{n-4π}$}中的最大項(xiàng)是( 。
A.第11項(xiàng)B.第12項(xiàng)C.第13項(xiàng)D.第14項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)f(x)=2cos(ωx+$\frac{π}{3}$)(ω>0)的圖象與x軸交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為$\frac{π}{2}$的等差數(shù)列,要得到函數(shù)g(x)=2sinωx的圖象,只需將函數(shù)f(x)的圖象(  )
A.向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度B.向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度
C.向右平移$\frac{5π}{12}$個(gè)單位長(zhǎng)度D.向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=ax2-2x+1.
(1)試討論函數(shù)f(x)的單調(diào)性;
(2)若$\frac{1}{3}$≤a≤1,且f(x)在[1,3]上的最大值為M(a),最小值為N(a),令g(a)=M(a)-N(a),求g(a)的表達(dá)式;
(3)在(2)的條件下,求g(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)f(x)是偶函數(shù)且滿(mǎn)足f(x+2)=-f(x),當(dāng)x∈[0,2]時(shí),f(x)=x-1,則不等式xf(x)<0在[-2,3]上的解集為(  )
A.(1,3)B.(-1,1)C.(-1,0)∪(1,3)D.(-2,-1)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)的定義域是(0,+∞),當(dāng)x>1時(shí)f(x)>0,且f(xy)=f(x)+f(y);
(1)求f(1);
(2)證明:f(x)在定義域上是增函數(shù);
(3)如果f(3)=1,解不等式f(x)+f(x-2)≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知遞增等差數(shù)列{an}中,a1=1,a1,a4,a10成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an•3n}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=lnx+x-2的零點(diǎn)x0∈[a,b],且b-a=1,a,b∈N*,則a+b=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知點(diǎn)A(2,4)在拋物線(xiàn)y2=2px上,且拋物線(xiàn)的準(zhǔn)線(xiàn)過(guò)雙曲線(xiàn)$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)焦點(diǎn),若雙曲線(xiàn)的離心率為2,則該雙曲線(xiàn)的方程為${x}^{2}-\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

同步練習(xí)冊(cè)答案