16.已知f(x)=2sin(2x+$\frac{π}{6}$)+a+1(其中a為常數(shù)).
(1)求f(x)的單調(diào)減區(qū)間;
(2)求出使f(x)取得最大值時x的集合;
(3)若x∈[0,$\frac{π}{2}$]時,f(x)的最小值為1,求a的值.

分析 (1)解2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$可得f(x)的單調(diào)減區(qū)間;
(2)當(dāng)2x+$\frac{π}{6}$=2kπ+$\frac{π}{2}$時,函數(shù)取最大值,可得x的集合;
(3)由x∈[0,$\frac{π}{2}$]可得當(dāng)2x+$\frac{π}{6}$=$\frac{7π}{6}$函數(shù)取最小值,解a的方程可得.

解答 解:(1)由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$可得kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$,
∴f(x)的單調(diào)減區(qū)間為[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z;
(2)當(dāng)2x+$\frac{π}{6}$=2kπ+$\frac{π}{2}$時,函數(shù)取最大值a+3,
此時x的集合為{x|x=kπ+$\frac{π}{6}$,k∈Z};
(3)∵x∈[0,$\frac{π}{2}$],∴2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],
∴當(dāng)2x+$\frac{π}{6}$=$\frac{7π}{6}$,即x=$\frac{π}{2}$時sin(2x+$\frac{π}{6}$)取最小值-$\frac{1}{2}$,
此時f(x)取最小值為2×(-$\frac{1}{2}$)+a+1=1,解得a=0

點(diǎn)評 本題考查正弦函數(shù)的單調(diào)性,涉及三角函數(shù)的最值,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知圓(x-a)2+(y-b)2=r2(r>0)與x軸,y軸都相切.則a、b、r應(yīng)滿足條件( 。
A.a=r,b=rB.|a|=|b|=rC.a=rD.b=r

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)Sn是等比數(shù)列{an}的前n項(xiàng)和,an>0,若S6-2S3=5,則S9-S6的最小值為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知三條直線l1:x+3y-3=0,l2:x-y+1=0,l3:2x+y+m=0交于同一點(diǎn),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知sin(3π-α)=-2sin($\frac{π}{2}$+α),則sinα•cosα等于$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的離心率e=$\frac{5}{4}$,且雙曲線C的焦點(diǎn)到它的一條漸近線的距離為3,則雙曲線C的方程為( 。
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若α為銳角,且sin(α-$\frac{π}{4}$)=$\frac{1}{4}$,則sinα的值為$\frac{\sqrt{2}+\sqrt{30}}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{{x}^{2}}-\frac{1}{x},x≥1}\\{2x+2,x<1}\end{array}\right.$,則f(f(0))=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=$\frac{{e}^{x}}{{x}^{2}}$+k($\frac{2}{x}$+lnx)(k為常數(shù)).
(1)當(dāng)k=0時,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)k≥0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若函數(shù)f(x)在(0,2)內(nèi)存在兩個極值點(diǎn),求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案