2.定義:給定關(guān)于x的函數(shù)y,對(duì)于該函數(shù)圖象上任意兩點(diǎn)(x1,y1),(x2,y2),當(dāng)x1<x2時(shí),都有y1<y2,稱該函數(shù)為增函數(shù).根據(jù)以上定義,可以判斷下面所給的函數(shù)中,是增函數(shù)的有①③.
①y=2x;    ②y=-x+1;   ③y=x2 (x>0);    ④y=-$\frac{1}{x}$.

分析 根據(jù)基本函數(shù)的單調(diào)性即可判斷.

解答 解:對(duì)于①,2>0,故為增函數(shù),
對(duì)于②-1<0,故不為增函數(shù),
對(duì)于③,當(dāng)x>0時(shí),為增函數(shù),
對(duì)于④,在每個(gè)象限內(nèi),為增函數(shù),缺少條件,故不為增函數(shù),
故答案為:①③.

點(diǎn)評(píng) 本題考查了冪函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.一個(gè)項(xiàng)數(shù)為偶數(shù)的等比數(shù)列,所有項(xiàng)之和為偶數(shù)項(xiàng)之和的4倍,前3項(xiàng)之積為64.求其通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若f(x)=|x-1|+|x+a|為區(qū)間[-3,b]上的偶函數(shù),則a+b=(  )
A.-2B.4C.2D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知集合A={x|1≤x≤a},B={y|y=5x-6,x∈A},C={m|m=x2,x∈A}且B∩C=C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)D是△ABC所在平面內(nèi)一點(diǎn),且$\overrightarrow{BC}=3\overrightarrow{CD}$,設(shè)$\overrightarrow{AD}=x\overrightarrow{AB}+y\overrightarrow{AC}$,則x+y=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.關(guān)于x的方程x2+(a+1)x+a+b+1=0(a≠0,a、b∈R)的兩實(shí)根為x1,x2,若0<x1<1<x2<2,則$\frac{a}$的取值范圍是(-$\frac{5}{4}$,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知f(x)為定義在區(qū)間(-∞,0)∪(0,+∞)上的偶函數(shù),當(dāng)x∈(0,+∞)時(shí),f(x)=log2x.
(1)求當(dāng)x∈(-∞,0)時(shí),函數(shù)f(x)的解析式.
(2)在給出的坐標(biāo)系中畫出函數(shù)f(x)的圖象,寫出函數(shù)f(x)的單調(diào)區(qū)間,并指出單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在直角坐標(biāo)系xOy中,已知曲線${C_1}:\left\{\begin{array}{l}x\;=cosα\\ y=si{n^2}α\end{array}\right.$(α為參數(shù)),在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線${C_2}:ρcos(θ-\frac{π}{4})=-\frac{{\sqrt{2}}}{2}$,曲線C3:ρ=2sinθ.
(l)求曲線C1與C2的交點(diǎn)M的直角坐標(biāo);
(2)設(shè)點(diǎn)A,B分別為曲線C2,C3上的動(dòng)點(diǎn),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(log2x)=log2(x+1).
(1)求f(x).
(2)用定義證明f(x)在其定義域上為增函數(shù).
(3)解不等式$f(x)<-{log_{\frac{1}{2}}}({4^x}-{2^x}+1)$.

查看答案和解析>>

同步練習(xí)冊(cè)答案