分析 先利用二次方程根的分布得出關(guān)于a,b的約束條件,再根據(jù)約束條件畫(huà)出可行域,設(shè)z=$\frac{a}$,再利用z的幾何意義求最值,只需求出直線OP過(guò)可行域內(nèi)的點(diǎn)A或點(diǎn)C時(shí),z分別、取得最大或最小,從而得到$\frac{a}$的取值范圍即可.
解答 解:設(shè)f(x)=x2+(a+1)x+a+b+1,則由題意可得$\left\{\begin{array}{l}{f(1)=2a+b+3<0}\\{f(0)=a+b+1>0}\\{f(2)=3a+b+7>0}\end{array}\right.$,
作出點(diǎn)(a,b)滿(mǎn)足的可行域?yàn)椤鰽BC的內(nèi)部,
其中點(diǎn)A(-2,1)、B(-3,2)、C(-4,5),
而式子$\frac{a}$的幾何意義是△ABC內(nèi)部任一點(diǎn)(a,b)與原點(diǎn)O連線的斜率,
而KOA=-$\frac{1}{2}$,KOB=-$\frac{2}{3}$,KOC=-$\frac{5}{4}$,
作圖,易知$\frac{a}$∈$(-\frac{5}{4},-\frac{1}{2})$,
故答案為:(-$\frac{5}{4}$,-$\frac{1}{2}$).
點(diǎn)評(píng) 本小題是一道以二次方程的根的分布為載體的線性規(guī)劃問(wèn)題,考查化歸轉(zhuǎn)化和數(shù)形結(jié)合的思想,能力要求較高,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | -2 | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\left\{{x|-\frac{1}{2}<x<1}\right\}$ | B. | $\left\{{x|-1<x<\frac{1}{2}}\right\}$ | C. | $\left\{{x|-\frac{1}{2}≤x≤1}\right\}$ | D. | $\left\{{x|-1≤x≤\frac{1}{2}}\right\}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2012 | B. | 2 | C. | 2013 | D. | -2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com