分析 變形已知式子,由三角函數(shù)的有界性可得$|{\frac{1+4y}{{\sqrt{4{y^2}+16}}}}|≤1$,解不等式可得.
解答 解:∵$y=\frac{4sinx+1}{2cosx-4}$,∴2ycosx-4y=4sinx+1,
∴2ycosx-4sinx=1+4y,
∴$\sqrt{4{y}^{2}+16}$cos(x+φ)=1+4y,其中tanφ=$\frac{2}{y}$,
∴$cos(x+ϕ)=\frac{1+4y}{{\sqrt{4{y^2}+16}}}$,∵|cos(x+ϕ)|≤1,
∴$|{\frac{1+4y}{{\sqrt{4{y^2}+16}}}}|≤1$,解得$-\frac{3}{2}≤y≤\frac{5}{6}$,
∴所求最大值為$\frac{5}{6}$,
故答案為:$\frac{5}{6}$.
點評 本題考查三角函數(shù)的最值,涉及三角函數(shù)的有界性和不等式的解法,屬基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}\overrightarrow{a}+\frac{2}{3}\overrightarrow$ | B. | $\frac{2}{3}\overrightarrow{a}+\frac{1}{3}\overrightarrow$ | C. | $\frac{3}{5}\overrightarrow{a}+\frac{4}{5}\overrightarrow$ | D. | $\frac{4}{5}\overrightarrow{a}+\frac{3}{5}\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 向左平移$\frac{π}{6}$個單位 | B. | 向右平移$\frac{π}{3}$個單位 | ||
C. | 向左平移$\frac{2π}{3}$個單位 | D. | 向右平移$\frac{2π}{3}$個單位 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com