分析 4bsinA=$\sqrt{7}$a,由正弦定理可得:4sinBsinA=$\sqrt{7}$sinA,解得sinB.由a,b,c成等差數(shù)列,且公差大于0,可得2b=a+c,A<B<C.B為銳角,cosB=$\sqrt{1-si{n}^{2}B}$.
可得sinA+sinC=2sinB.設(shè)cosA-cosC=m>0,平方相加化簡(jiǎn)即可得出.
解答 解:在△ABC中,∵4bsinA=$\sqrt{7}$a,由正弦定理可得:4sinBsinA=$\sqrt{7}$sinA,sinA≠0,解得sinB=$\frac{\sqrt{7}}{4}$.
∵a,b,c成等差數(shù)列,且公差大于0,
∴2b=a+c,A<B<C.
∴B為銳角,cosB=$\sqrt{1-si{n}^{2}B}$=$\frac{3}{4}$.
∴sinA+sinC=2sinB=$\frac{\sqrt{7}}{2}$.
設(shè)cosA-cosC=m>0,
平方相加可得:2-2cos(A+C)=${m}^{2}+\frac{7}{4}$,
∴2+2cosB=${m}^{2}+\frac{7}{4}$,
∴m2=$\frac{7}{4}$,
解得m=$\frac{\sqrt{7}}{2}$.
故答案為:$\frac{{\sqrt{7}}}{2}$.
點(diǎn)評(píng) 本題考查了正弦定理、等差數(shù)列的性質(zhì)、和差公式、同角三角函數(shù)基本關(guān)系式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 垂直 | B. | 共線 | C. | 不垂直 | D. | 以上都有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3×360°-315° | B. | -9×180°-45° | C. | -4×360°+315° | D. | -3×360°+45° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x+2)2+(y-1)2=12 | B. | (x-2)2+(y+1)2=12 | C. | (x-2)2+(y+1)2=3 | D. | (x+2)2+(y-1)2=3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com