A. | 若m⊥α,m⊥n,則n∥α | B. | 若m∥α,n∥α,則m∥n | ||
C. | 若m,n與α所成的角相等,則m∥n | D. | 若m?α,m∥n,且n在平面α外,則n∥α |
分析 在A中,n∥α或n?α;在B中,m與n相交、平行或異面;在C中,m與n相交、平行或異面;在D中,由直線與平面平行的判定定理得n∥α.
解答 解:在A中:若m⊥α,m⊥n,則n∥α或n?α,故A錯(cuò)誤;
在B中:若m∥α,n∥α,則m與n相交、平行或異面,故B錯(cuò)誤;
在C中:若m,n與α所成的角相等,則m與n相交、平行或異面,故C錯(cuò)誤;
在D中:若m?α,m∥n,且n在平面α外,則由直線與平面平行的判定定理得n∥α,故D正確.
故選:D.
點(diǎn)評 本題考查命題真假的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=(x-1)2 | B. | f(x)=ex | C. | f(x)=$\frac{1}{x}$ | D. | f(x)=ln(x+1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com