10.已知sin($\frac{π}{6}$+α)=$\frac{3}{5}$,則cos($\frac{2π}{3}$-2α)=$-\frac{7}{25}$.

分析 利用倍角公式、誘導(dǎo)公式即可得出.

解答 解:sin($\frac{π}{6}$+α)=$\frac{3}{5}$,
則cos($\frac{2π}{3}$-2α)=$2co{s}^{2}(\frac{π}{3}-α)$-1=$2si{n}^{2}(\frac{π}{6}+α)$-1=$2×(\frac{3}{5})^{2}-1$=-$\frac{7}{25}$.
故答案為:$-\frac{7}{25}$.

點(diǎn)評(píng) 本題考查了倍角公式、誘導(dǎo)公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3=6,S4=20,求和:$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知兩點(diǎn)A(-1,0),B(0,2),點(diǎn)C是圓(x-1)2+y2=1上任意一點(diǎn),則△ABC面積的最小值是2-$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.圓x2+y2-4=0與圓x2+y2+2x=0的位置關(guān)系是( 。
A.相離B.相切C.相交D.內(nèi)含

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.給出下列五種說(shuō)法:
(1)方程2x-x2=0有兩解.
(2)若函數(shù)y=f(x)是函數(shù)y=ax(a>0,且a≠1)的反函數(shù),且f(2)=2,則a=2.
(3)三棱錐V-ABC中,VA=VB=AC=BC=2,AB=2$\sqrt{3}$,VC=1,則二面角V-AB-C的大小為60°.
(4)已知函數(shù)f(x)為R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x(x+1).若f(a)=-2,則實(shí)數(shù)a=-1.
(5)若y=f(x)在定義域(-1,1)上是減函數(shù),且f(1-a)<f(2a-1),則實(shí)數(shù)a<$\frac{2}{3}$.
其中正確說(shuō)法的序號(hào)是(3)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖,在正方體ABCD-A1B1C1D1中,P為正方形A1B1C1D1四邊上的動(dòng)點(diǎn),O為底面正方形ABCD的中心,Q為ABCD所在平面上一點(diǎn),使線段D1Q與OP互相平分,則點(diǎn)Q的軌跡為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.經(jīng)市場(chǎng)調(diào)查,某商品在過(guò)去20天的日銷售量和日銷售價(jià)格均為銷售時(shí)間t(天)的函數(shù),日銷售量(單位:件)近似地滿足:f (t)=-t+30(1≤t≤20,t∈N*),日銷售價(jià)格(單位:元)近似地滿足:g(t)=$\left\{\begin{array}{l}2t+40,1≤t≤10,t∈N*\\ 15,11≤t≤20,t∈N*\end{array}$
(1)寫出該商品的日銷售額S關(guān)于時(shí)間t的函數(shù)關(guān)系;
(2)當(dāng)t等于多少時(shí),日銷售額S最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知第一象限內(nèi)的點(diǎn)(a,b)在直線x+4y-2=0上運(yùn)動(dòng),則$\frac{1}{a}$+$\frac{1}$的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,已知直三棱柱ABC-A1B1C1中,AB=AC,D、E分別為BC、CC1中點(diǎn),BC1⊥B1D.
(1)求證:DE∥平面ABC1;
(2)求證:平面AB1D⊥平面ABC1

查看答案和解析>>

同步練習(xí)冊(cè)答案